
WI-Project: Open source project

Introduction to Git

Prof. Dr. Gerit Wagner
Faculty of Information Systems and Applied Computer Sciences
Otto-Friedrich-Universität Bamberg

Open Source Project: Introduction to Git

1

Check-in: Group formation

Milestone

Is anyone not yet part of an issue discussion?

Are there any challenges related to the setup?

Open Source Project: Introduction to Git

2

https://github.com/CoLRev-Environment/colrev/milestones

Git: A distributed version control system

Advantages:

Every repository has a full version history.

Most operations run locally.

Reliable data handling ensures integrity and availability.

Efficient data management for versions and branches.

Scalable collaboration mechanisms for large teams and complex projects.

Caveats:

There is a need to learn and understand the underlying model.

Git is not built for binary files or large media files.

Open Source Project: Introduction to Git

3

Learning objectives

Understand and use Git to develop software in teams.

Part 1: Branching
Part 2: Committing
Part 3: Collaborating

Each part starts with the concepts before the practice session.

In the practice sessions:

Form groups of two to three students.

Work through the exercises.

Create a cheat sheet summarizing the key commands.

* Note: This session is based on our unique and peer-reviewed approach.

Open Source Project: Introduction to Git

4

https://digital-work-lab.github.io/rethink-git-teaching/

Start the Codespace

Start a Codespace for CoLRev here.

Open the notebook for practicing Git branching:

OpenOpen Jupyter NotebookJupyter Notebook

Open Source Project: Introduction to Git

5

https://github.com/CoLRev-Environment/colrev
https://digital-work-lab.github.io/open-source-project/docs/week_2_git_notebook_branching.html
https://digital-work-lab.github.io/open-source-project/docs/week_2_git_notebook_branching.html

Part 1: Branching

Open Source Project: Introduction to Git

6

Commits

A commit refers to a snapshot (version) of the whole project
directory, including the metadata and files.

The tree object contains all files (and non-empty directories); it
is identified by a SHA hash.

Commits are created in a sequence, with every commit pointing
to its parent commit(s).

Commits are identified by the SHA fingerprint of their metadata
and content*, e.g., 98ca9 .

Commits are created by the git commit command.

* If any of the metadata or content changes, the SHA will be completely different.

Open Source Project: Introduction to Git

7

The DAG, branches, and HEAD

Commits form a directed acyclic graph (DAG), meaning all commits can have
one or more children and one or more parents (except for the first commit, which
has no parent). Closed directed cycles are not allowed.

With the git branch <branch-name> command, a separate line of commits can
be started, i.e., one where different lines of commits are developed from the same
parent. The branch pointer typically points at the latest commit in the line.

With the git switch <branch-name> command, we can select the branch on
which we want to work. Switch effectively moves the HEAD pointer, which points
to a particular branch and indicates where new commits are added.

With the git merge <other-branch> command, separate lines of commits can be
brought together, i.e., creating a commit with two parents. The merge commit
integrates the contents from the <other-branch> into the branch that is currently
selected. The <other-branch> is not changed.

By default, Git sets up a branch named "main".

Note: Arrows point from children to parent commits.

Open Source Project: Introduction to Git

8

Practice: Branching

Open the notebook for practicing Git branching:

OpenOpen Jupyter NotebookJupyter Notebook

Open Source Project: Introduction to Git

9

https://digital-work-lab.github.io/open-source-project/docs/week_2_git_notebook_branching.html
https://digital-work-lab.github.io/open-source-project/docs/week_2_git_notebook_branching.html

Part 2: Committing

Open Source Project: Introduction to Git

10

The working directory and .git repository

All working file contents reside in the working directory; staged and committed
file contents are stored in the .git directory (a subfolder of the working
directory).

With git init, the .git directory is created.

Git allows us to stage (select) specific file contents for the next commit.

With git add <file-name>, contents of an untracked or modified file are
copied to the .git repository and added to the staging area, i.e.,
explicitly marked for inclusion in the next commit.

With git commit, staged file contents are included in a commit.

* Note: Git only keeps track of files that are explicitly added. Untracked files are not part of the .git repository, i.e., not
included in the version history and not shared when the repository is synchronized. Files must be untracked explicitly, as
shown on the next slide. Git only keeps track of files, not (empty) directories.

Open Source Project: Introduction to Git

11

The three states of a file

Files in the working directory can reside in three states:

New files are initially untracked, meaning Git does not include new files
in commits without explicit instruction.

With git add, file contents are staged, and the file is tracked. Given that
the file in the working directory is identical to the staged file contents, the
file is unmodified.

When users change a file, it becomes modified, meaning the file in the
working directory differs from the file contents in the staging area.

With git add, the file contents are staged again, and the file becomes
unmodified.

With git rm, files are no longer tracked.

* Note: git add and git rm do not change the contents of the file in the working directory.

Open Source Project: Introduction to Git

12

Resetting changes

To undo changes that are not yet committed, it is important to understand
whether they are staged or unstaged:

If changes are not yet staged, the file is currently modified. A git restore
<file-name> replaces the file in the working directory with the staged
version. As a result, the file is unmodified because it corresponds to the
staged file.

If the file is currently unmodified, a git restore --staged <file-name>
discards the staged changes by using the last committed version. The file
contents in the working directory do not change, but the file becomes
modified because it differs from the staged version.

Open Source Project: Introduction to Git

13

Practice: Committing

Open the notebook for practicing Git committing:

OpenOpen Jupyter NotebookJupyter Notebook

Open Source Project: Introduction to Git

14

https://digital-work-lab.github.io/open-source-project/docs/week_2_git_notebook_committing.html
https://digital-work-lab.github.io/open-source-project/docs/week_2_git_notebook_committing.html

Transfer challenges I

Consider how the git switch (or the revert/pull/checkout) command affects the Git areas. How does it affect the working directory?

Open Source Project: Introduction to Git

15

Transfer challenge: Git merge conflicts

Open the notebook for practicing the resolution of Git merge conflicts (related to branching and committing):

OpenOpen Jupyter NotebookJupyter Notebook

Open Source Project: Introduction to Git

16

https://digital-work-lab.github.io/open-source-project/docs/week_2_git_notebook_merge_conflict.html
https://digital-work-lab.github.io/open-source-project/docs/week_2_git_notebook_merge_conflict.html

Part 3: Collaborating

Open Source Project: Introduction to Git

17

Collaborating

The distributed model of Git means that every repository has a full version history,
(almost) all operations can be completed locally, and every repository can be
developed autonomously.

To collaborate, a remote repository is needed, initially named "origin."

If the remote repository exists, the git clone command retrieves a local copy.

To create a remote repository (named "origin") and push a specific branch:

git remote add origin REMOTE-URL
git push origin main

* If the remote repository does not exist, you have to add the remote origin and push the repository.
* The REMOTE-URL must be an SSH URL. Otherwise, changes cannot be pushed.

Open Source Project: Introduction to Git

18

Collaborating on branches

To retrieve changes, use the git pull command.

To share changes, use the git push command.

Most remote operations, including pull, push, and pull requests, refer
to branches.

In some cases, branches must be selected explicitly, and in other
cases, Git automatically selects branches, i.e., it remembers the
typical branch to pull or push.

Open Source Project: Introduction to Git

19

Collaborating with forks

This model works if you are a maintainer of the remote/origin, i.e., if you
have write access.

In open source projects, write access is restricted to a few maintainers.

At the same time, it should be possible to integrate contributions from
the community.

Forks are remote copies of the upstream repository.

Contributors can create forks at any time and push changes.

Contributors can open a pull request to signal to maintainers that
code from the fork can be merged.

Pull requests are used for code review and improvements before code
is accepted or rejected.

Open Source Project: Introduction to Git

20

Fork, invite, clone, and pull request on GitHub

(3.) You only need to clone the repository explicitly if you work in a local setup. If you start a Codespace, this is done automatically.

Open Source Project: Introduction to Git

21

Work in a forked repository

In the fork, it is recommended to create working
branches instead of committing to the main branch.

It is good practice to regularly sync the main branches
(on GitHub) and merge the changes into your working
branches (locally or on GitHub).

Syncing changes may be necessary to get bug fixes
from the original repository and to prevent diverging
histories (potential merge conflicts in the pull request).

Open Source Project: Introduction to Git

22

Practice: Collaborating

This notebook is not part of the Git session and is intended for you to work on independently at home. If you have any questions, feel
free to bring them up at the beginning of the next Python session. We’ll be happy to discuss them then!

OpenOpen Jupyter NotebookJupyter Notebook

Open Source Project: Introduction to Git

23

https://digital-work-lab.github.io/open-source-project/docs/week_2_git_notebook_collaboration.html
https://digital-work-lab.github.io/open-source-project/docs/week_2_git_notebook_collaboration.html

Try CoLRev

We have prepared a tutorial for CoLRev:

colrev-tutorial. You can run it in a Codespace environment. It contains a notebook (.devcontainer/tutorial.ipynb) explaining
how to set up a CoLRev repository, complete the different steps, and analyze how the dataset changes.

In addition, a brief overview is available on YouTube.

We invite you to work through the notebook before the next session.

Open Source Project: Introduction to Git

24

https://github.com/CoLRev-Environment/colrev-tutorial
https://www.youtube.com/watch?v=yfGGraQC6vs

Survey

Please share your feedback to help us improve!

Survey on the Git Introduction

Open Source Project: Introduction to Git

25

https://survey.ism.uni-bamberg.de/index.php/994884?lang=en

Project organization

Select a team leader who creates the fork and invites group members.

Plan how tasks could be completed in separate branches.

Avoid working on the main branch and synchronize it regularly with the original repository.

Regularly check whether branches should be synchronized (merged).

Remember to delete the Codespace!

Open Source Project: Introduction to Git

26

