Journal of Information Systems Education, 36(1), 1-12, Winter 2025
https://doi.org/10.62273/BTKMS5634

Teaching Tip
Rethinking How We Teach Git: Pedagogical
Recommendations and Practical Strategies for the
Information Systems Curriculum

Gerit Wagner
Laureen Thurner
Faculty Information Systems and Applied Computer Science
Otto-Friedrich-Universitit Bamberg
Bamberg, Germany
gerit.wagner(@uni-bamberg.de, laureen.thurner@uni-bamberg.de

ABSTRACT

Git, as the leading version-control system, is frequently employed by software developers, digital product managers, and knowledge
workers. Information systems (IS) students aspiring to fill software engineering, management, or research positions would therefore
benefit from familiarity with Git. However, teaching Git effectively can be challenging, as students in IS and other disciplines
report themselves overwhelmed by the plethora of Git’s detailed commands and options, including those involved in local setup
and secure shell (SSH) connections. From our view, such technical considerations distract students, and even prevent them from
developing a deeper understanding of the Git model and its underlying concepts. Ideally, teaching efforts should convey a solid
understanding of the Git model and thereby enable students to ask the right questions and look up the relevant commands. With
this teaching tip, we therefore challenge the common approach to organizing Git teaching materials. In particular, we draw on
established pedagogical theory to propose a novel approach that employs a new, macro-level ordering of contents beginning with
the concept of branches and then proceeding to committing and collaboration. We present several practical strategies that make
this approach feasible. In addition, we recommend that teachers clearly separate conceptual from applied learning and present the
more challenging transfer questions at the end of the course. Our hope is to stimulate reflection on the most effective ways to teach
Git to future professionals.

Keywords: Git, Collaborative versioning, Distributed version control, Open source, Software engineering, Information systems
as)

1. INTRODUCTION

With a dominant market share, Git is the leading version control
system in use today (Dohmke, 2023). The distributed and
efficient model of Git makes it particularly useful for teams that
are not co-located but contribute to the same code-base in an
asynchronous manner. Originating from the open-source
community, the system has seen rapid adoption in the private
sector, with thousands of freelancers, startups, and large tech
companies using it. GitHub has turned into the largest hosting
platform for Git repositories, allowing developers to manage,
store, and share software being worked on concurrently. In
2018, when Microsoft and Google competed to acquire it,
GitHub had approximately 83 million active accounts and 200
million repositories. Following Microsoft’s acquisition for $7.5
billion, GitHub established itself as the dominant developer
platform (Microsoft News Center, 2018), and, as of January
2023, it reported having over 100 million developers and
hosting over 420 million repositories. Today, a range of large
corporations, including Microsoft, Google, Meta (Facebook),
IBM, Netflix, and Airbnb employ Git and GitHub for internal

software development as well as their comprehensive open-
source programs.

The diffusion of Git raises new requirements for students in
the field of information systems (IS). Due to its essential role in
the software development industry, surveys of skill
requirements and industry recruiters increasingly recognize the
need for versioning skills (Aasheim et al., 2012; Brooks et al.,
2018; Cummings & Janicki, 2020). Experience with Git also
figures prominently in a range of typical IS job roles (DeSanto
et al., 2023):

e Software developers rely on Git in their workflow to
facilitate collaboration and code management in both
front-end and back-end development settings
(Deshpande et al., 2016; Latinovic & Pammer-
Schindler, 2021). Further, developers often integrate
code formatters and code linters into their Git
repositories to ensure consistency of code style and
quality. Additionally, Git enables the practice of rapid
prototyping and agile development, allowing
developers to experiment with new features without
affecting the main codebase.

https://doi.org/10.62273/BTKM5634
mailto:gerit.wagner@uni-bamberg.de
mailto:laureen.thurner@uni-bamberg.de

Journal of Information Systems Education, 36(1), 1-12, Winter 2025
https://doi.org/10.62273/BTKMS5634

e DevOps managers use Git to orchestrate the steps
involved in the continuous integration pipeline,
including code versioning, automated testing, and
deployment (Bou Ghantous & Gill, 2017). For example,
GitLab, a popular DevOps platform, provides a
comprehensive set of tools for managing the software
development lifecycle. These tools enable development
and operations teams to seamlessly collaborate, thus
streamlining the entire software delivery process.

e Git and platforms like GitHub or Gitlab provide a
central location for such digital product-management
tasks as specifying requirements, tracking development
progress, resolving bugs, and addressing security
vulnerabilities. Therefore, in addition to programmers,
product owners, portfolio managers, and IT architecture
managers use it (Smits & Mogos, 2013; Thummadi et
al., 2017) to track requirements, coordinate
development activity, and assist the development team
in completing predefined milestones.

These examples show that Git, its workflows, and
associated tools have become essential for professionals and
students alike, as they provide the necessary infrastructure for
effective code management, collaboration, and project
coordination.

Most teaching materials present the contents in a technical
manner familiar to computer science students, but not to IS
students, who prepare for job roles involving coding, but also
organizing, coordination, and leadership skills (Bou Ghantous
& Gill, 2017; Latinovic & Pammer-Schindler, 2021; Smits &
Mogos, 2013). In this sense, the teaching of Git to IS students
presents an exemplary setting in which technical and
managerial skills intertwine. As our review of existing teaching
resources shows, the majority of Git courses targets computer
science students. Thus, these teaching materials may be less
appropriate for IS students, who often have limited experience
operating command-line applications, interpreting error
messages, or thinking in terms of (directed acyclic) graphs.
Therefore, the need to develop specific approaches and
materials to teach Git to IS students is evident.

In particular, our review of extant teaching materials
suggests that current teaching approaches are often constrained
by technical considerations. For example, a typical Git
introduction template begins with the command git init to set
up repositories, followed by instructions for students to
configure their Git name and email, as these are required for the
init command, and concludes with guidance on setting default
editors, which is necessary for writing commit messages.
Further technical setup is related to the secure shell (SSH)
protocol configuration, which handles remote encrypted
connections between computers and includes generation and
registration of asymmetric keys. While these steps are certainly
needed for some use cases, they constitute specific setup tasks
that are not needed frequently in day-to-day use of Git.

Our goal is to challenge and rethink existing approaches to
teaching Git which typically begin with, presumedly necessary,
technical setup tasks. Yet, these often produce errors for
students, and interfere with their efforts to gain an in-depth
understanding of Git. Unlike current approaches, the approach
we propose is driven by pedagogical considerations that are
focused on clearly conveying Git’s fundamental model early in
a course. Therefore, it is aimed at effectively preparing IS

students to apply and use Git. Prior to presenting this approach,
we examine previous teaching efforts and problematize the
challenges inherent in the predominant approach to teaching
Git. Using this as a foundation, we then describe our approach,
which is based on a different ordering of contents at the macro
level. In addition, we provide the pedagogical principles on
which our proposed model is based, practical strategies for its
implementation, and examples of its application. Based on
initial feedback, the IS students to whom we taught Git using
our proposed teaching model perceived it as a pleasant learning
experience leading to better learning outcomes than do those
approaches commonly in use today.

2. RELATED WORK

2.1 Key Competence Areas in Git

We distinguish three areas of Git competences—committing,
branching, and collaborating—which are essential for efficient
software development and project management. These topics,
which are summarized below, are covered in most Git teaching
materials.

2.1.1 Committing. Developers modifying their code add and
commit selected changes to their repository. These snapshots of
the project’s history allow developers to track and revert
changes if needed. In committing changes, knowing how to
create atomic commits is essential. These are changes that
contain a single complete and coherent unit of work, i.e., one
that stands on its own, and is dedicated to accomplishing one
and only one task without depending on or affecting other
commits. A Git user should attach a clear and descriptive
message to an atomic commit that summarizes the changes
made so as to have a concise version history of the software’s
development and facilitate effective collaboration (Westby,
2015).

2.1.2 Branching. This refers to the creation of separate lines of
development in a code repository. The operations of creating
branches, adding commits to selected branches, and merging
branches, effectively build a directed acyclic graph, the
underlying conceptual structure of Git. It is almost impossible
to use Git effectively without a clear mental model of how
different branching operations contribute to the directed acyclic
Git graph. In practice, branching allows developers to begin
separate lines of commits from the codebase. By switching to a
selected branch, they can work on different features or bug fixes
without affecting the main codebase, and then merge the code
once it is ready. Therefore, branching is a facility that is
particularly useful in large projects with multiple developers, as
it allows for efficient parallel development (Westby, 2015).

2.1.3 Collaborating. This remotely enables the development of
software by teams working asynchronously in different
locations. Typically, code is developed in local repositories
until it is judged ready to be uploaded (or pushed) to the remote
repository, e.g., on GitHub. Remote repositories do not allow a
noncontributor to push changes to the repository; instead, the
developer must open a pull request to the original remote
repository. Thus, push, pull, and pull requests allow developers
working remotely to synchronize their local changes across
repositories and so enable asynchronous remote work with

https://doi.org/10.62273/BTKM5634

Journal of Information Systems Education, 36(1), 1-12, Winter 2025
https://doi.org/10.62273/BTKMS5634

considerable software

collaboration.

flexibility in development and

2.2 Teaching Resources

In the plethora of teaching resources, committing is typically
presented prior to branching and collaborating. Table 1
provides an overview of massive open online courses (MOOCs)
dedicated to Git and GitHub. Three of the courses are provided
via Coursera by Google, Meta, and Atlassian University and
one by Software Carpentry. These courses are professionally
designed, include multimedia materials, and require from 8-16
hours to complete. The Version Control With Git course,
offered by Atlassian University, includes interactive learning,
whereas the others provide self-learning environments.

Course Title (Provider)
Version Control With Git
(Atlassian, via Coursera)
Introduction to Git & GitHub
(Google, via Coursera)
Version Control

(Meta, via Coursera)

Version Control With Git
(Software Carpentry)

Target Duration
Beginner 13h

Beginner 16h

Beginner 13h

Intermediate | 8h

Table 1. Massive Open Online Courses Dedicated to
Git and GitHub

As shown in Table 2, these courses all present the material
in a common order, beginning with committing and then
proceeding with branching or collaborating. To the best of our
knowledge, no teaching resources deviate from the committing—
branching—collaborating sequence.

Course Title Order of Competences
Version Control | 1. Initializing, committing, pushing
With Git 2. Branching and merging

3. Workflows for collaborating

remotely

Introduction to 1. Using Git locally: committing and
Git & GitHub branching

2. Working with remotes

3. Collaborating
Version Control | 1. Overview and history of Git

2. Command-line introduction

3. Working with Git and setup
Version Control | 1. Automated version control
With Git 2. Git setup

3. Creating a repository

4. Tracking changes

5. Collaborating

Table 2. The Common Order of Competences in
Teaching Materials

While numerous teaching resources and academic papers
have explored methods for teaching Git, none have challenged
the conventional sequence of committing, branching, and
collaborating. Haaranen and Lehtinen (2015) highlight the
usefulness of version control systems in a classroom setting,
incrementally presenting features of Git and incorporating them

into the course workflow to distribute exercises, streamline
student assessment, and facilitate project collaboration.
Tafliovich et al. (2019) report teaching Git-based collaboration
in a large, free open-source software project incorporating
project-based learning and service learning principles. Their
course incorporated effective hands-on teaching of essential
software engineering topics and a capstone project. In an
introduction to Git, Pathak (2020) provides a comprehensive
overview, including such topics as setting up a central Git
server, granting passwordless access to developers, and
registering public keys with the Git server. Additional topics
covered are making the first commit and pushing changes.
Jabrayilzade et al. (2022) address the lack of Git knowledge
among computer science and software engineering students,
implementing a four-session training program as part of an
object-oriented software engineering course. Finally, Vial and
Negoita (2018) focus on teaching programming and the use of
GitHub for both IS students or non-programmers.

A significant number of researchers discuss pitfalls,
challenges, and errors repeatedly encountered in Git’s use. De
Rosso and Jackson (2013) outline issues that “puzzle even
experienced developers” (p. 37), identifying an array of
undesirable or counterintuitive properties of Git based on a
conceptual design analysis. Isométtonen and Cochez (2014)
surveyed students of computing curricula about the different
challenges they encountered when using the Git command line.
Lippa (2016) organized a workshop titled “Get Out of Git Hell”
to combat a range of systemic problems with Git’s use that have
slowed down or even blocked the work of teams. Lippa (2016)
attributes these problems to “poor tool design, misuse or
misconfiguration of the command line interface, and lack of
understanding of the ‘nuts and bolts’ of the tool” (p. 22).
Finally, Eraslan et al. (2020) draw attention to common errors
and pitfalls in the use of Git, including the neglect of feature
branches, committing of unrelated files, and the lack of
appropriate branching and merging practices.

In conclusion, the academic research summarized above
has highlighted the importance of teaching Git in different
settings, while recognizing the presence of persistent
challenges. We have not found any resources that suggest
deviating from the committing - branching - collaborating
sequence as a solution. Our work challenges this order and
builds on prior pedagogical theory to envision a more effective
strategy for teaching Git to IS students.

3. COURSE SETTING

We teach Git in two settings, specifically as a part of a lecture-
based course and as part of a capstone project. These sessions
were offered across three semesters and were primarily taken
by undergraduate IS students. As shown in Table 3, the
percentage of female students varied, but slightly exceeded the
percentage of female students enrolled in the department. While
introductory programming courses, including Java, algorithms,
and data structures, are recommended as prerequisites, they are
not mandatory. The Git sessions do not require programming
skills, although familiarity with command-line interfaces or
graph data structures is helpful.

The lecture, Introduction to Digital Work, included a four-
hour session covering Git basics and a four-hour session
covering the Git Collaboration Game (Wagner, 2024). The goal
was to familiarize students with Git as an essential technology

https://doi.org/10.62273/BTKM5634

Journal of Information Systems Education, 36(1), 1-12, Winter 2025
https://doi.org/10.62273/BTKMS5634

for digital work and collaborative content creation. As such, this
setting did not involve programming but used editing of
Markdown files as a basis for practical exercises. These focused
sessions were complemented by sessions covering open-source
philosophy and knowledge-management approaches based on
Markdown files and Zettelkasten principles, both areas where
Git knowledge is highly beneficial.

Number of students
Summer | Winter | Summer
2023 2023 2024
Course | Introduction 25 - 6
to Digital
Work
(lecture)
Open-Source | 14 4 15
Project
(capstone)
Major | Information 37 4 18
systems
Other 2 0 3
Gender | Male 28 4 12
Female 11 0 9
Total 39 4 21

Table 3. Overview of Courses and Number of
Students

The capstone project, titled The Open-Source Project,
contained a four-hour session dedicated to Git, including
collaboration with specific follow-up instructions. The aim was
to teach students how to apply Git in a practical group
programming project. Working in groups of three or four,
students contributed to the development of CoLRev (Wagner &
Prester, 2024), a Python library for literature reviews. In
addition to Git, we offered introductory sessions on Python and
development of Python packages, each four hours long. To
complete the project, each student was expected to contribute
code by using the Git collaboration model of branches, forks,
and pull requests.

The key competencies for both courses are:

1. Understand Git conceptually: Students should be
familiar with the key concepts in the three areas. In
branching, they should be able to explain the elements
of commits, including the directed acyclic Git graph, as
well as branch and head pointers and corresponding
operations. In committing, they should be able to
explain the three areas of the working directory, the
staging area, and the Git repository, as well as the
operations to move file changes across these areas. In
collaborating, they should be able to explain different
setups for remote repositories, including
synchronization through push, pull, and pull requests.

2. Apply basic Git operations: Students should be able to
operate Git on the command line using operations to
manipulate branches (git branch, checkout, switch,
merge), create commits (git add, commit, restore,
reset), and collaborate (git pull, push, fetch). They
should recognize these operations in graphical software
packages and online platforms.

3. Manage Git in small projects: Students should
understand how the three Git areas work together. They
should be able to assess the state of Git repositories,
describe how Git could be used for open-source projects
or rapid prototyping, and select a suitable setup for
small projects.

4. PEDAGOGICAL APPROACH AND PRACTICAL
STRATEGIES FOR TEACHING GIT

Our recommendations are the result of a prolonged effort to
effectively teach Git in the IS curriculum, as summarized
briefly in the following reflection. Although students generally
recognized the significance of Git, our first sessions showed
that their initial motivation to learn it quickly eroded when
faced with technical difficulties. Through our ongoing
conversations with students, teaching assistants, and
colleagues, we identified two fundamental challenges with the
conventional approach of teaching Git.

First, technical errors in the Git setup or process often
created situations in which students were unable to complete
the next step or even failed to follow subsequent tasks. This
issue was exacerbated when students worked on their own
devices, each with its own idiosyncratic environment. Despite
the support of dedicated teaching assistants, technical errors and
dependencies were the main reason students fell behind and
experienced frustration. Second, as discussed previously (De
Rosso & Jackson, 2013; Eraslan et al., 2020; Isométtonen &
Cochez, 2014; Lippa, 2016), the complexity of Git is a
persistent challenge that can quickly overwhelm students.
Much like beginning swimmers attempting to learn the front
crawl swimming technique with flutter kicks, appropriately
timed rotation, and breathing, students were simply
overwhelmed by Git’s cognitive complexity. Employing this
analogy to theorize our teaching approach (Hassan et al., 2023)
inspired us to experiment with changes corresponding to those
employed by swimming instructors.

The focus of the first change we introduced was isolating
each competence area so as to create both cognitively and
technically self-contained sessions. This modification is
particularly challenging for the branching and collaborating
areas, which often involve distracting tasks related to the setup,
the creation of changes to a file, or errors associated with these.
Some of our colleagues were even surprised at our suggestions
to practice branching or collaborating without first setting up a
local repository. Consulting prior teaching materials revealed
that few, if any, deliberate attempts had been made to practice
the different competence areas separately. Throughout the
semesters, we continued to disentangle learning settings
cognitively and technically, gradually observing improvements
that confirmed what is common knowledge among swimming
coaches: the benefits of breaking down complex tasks and
practicing them separately.

Second, after disentangling the three competence areas, we
questioned the order of the contents of Git instruction, which
was previously viewed as dictated by necessity. Stated simply,
and with some degree of exaggeration, the rationale in the early
stages of teaching Git was that “We cannot start with
collaboration because it is first necessary to have a branch,
which requires some commits, and the setup of a repository,
with corresponding instructions to use the command line.
Therefore, starting with the command line is necessary.” Upon

https://doi.org/10.62273/BTKM5634

Journal of Information Systems Education, 36(1), 1-12, Winter 2025

https.://doi.org/10).

62273/BTKM5634

disentangling the learning settings, we identified options to
practice collaboration, branching, and committing without such
constraining dependencies. In essence, learning each area
separately made it possible to organize the macro-level order of
competence areas in a way that is most conducive to the
learning process. In this new setting, we quickly agreed to start
with the branching and the Git graph, which not only reflects
how developers begin their work but also covers fundamental
meso-level concepts that help students understand the other
areas. Analogously, swimming coaches start with a swimming
board to help participants develop a relaxed rhythm of leg kicks
as a basis to learning arm pulls, breathing, and details of timing
and body position.

Third, as our disentangling and reordering efforts appeared
to be working, students seemed capable of handling more
challenging questions, and we consequently included transfer
questions at the end of the course to stimulate thinking across
areas. Apparently, our deliberate effort to isolate and connect
concepts resulted in students’ no longer feeling overwhelmed
by complexity and equipped with a solid understanding of Git
concepts. To conclude with our analogy to swimming lessons,
which may simulate the challenges of open water racing
conditions, once a basic skill is acquired, exposing learners to

additional challenges can be an ingredient to master a skill even
more effectively.

Figure 1 depicts our overall approach to teaching Git.
Following it is a presentation of the pedagogical principles,
including their bases in cognitive and pedagogical theory, and
practical strategies to implement them. To increase readability,
we proceed from the most fundamental changes in the
traditional teaching of Git to the follow-up adjustments and
provide advice related to the practical implementation of our
approach in the classroom.

4.1 Pedagogical Recommendation 1: Reorder the
Competence Areas to Start with Branching

With our first and most fundamental recommendation, we
suggest reconsidering the order in which the contents are
introduced. Specifically, our approach starts with the
competence in branching because understanding it enables a
quick and high-level understanding of Git and then proceeds
with committing and collaborating whose understanding
benefits from a prior knowledge of branching. While most Git
courses typically begin with versioning and then move on to
collaboration, we suggest that a better order is to start with
branching, followed by versioning and collaboration.

Pedagogical recommendations (PR)

PR 1: Reorder areas

PR 2 : Separate conceptual and interactive learning in each area

PR 3: Transfer between areas

Collaborating (3} F“"cepts:

Properties and elements: Distributed
setting, complete project repositories,
access rights, remotes and forks
Operations: Clone, push, pull
operations

Best practices: Repository setup,

Conclude with i
collaborative versioning,
which occurs in the !
context of selected
branches in distributed

5
Remate origin g &
repository ¢

Pull request

"""" 12 Remote fork
repository

Push

settings rebasing, continuous integration, code s —
| quality tools, coordination Local repository o i o ; Local repositary
(maintainer) ¢ s {
‘ Interactive learning \ 2 _E
Open-source collaboration game I h Y 3
3
— S 3
» 1 } Branching Concepts ‘ 1\ 3
Ny - Properties and elements: commits @ commie N -
Start with the level, as complete snapshots, branches, é
which contains the most ‘ HEAD, merge commits O E
fundamental concepts QOperations: Checkout, commit e g
' ‘ Best practices: Branching models Q
¢ @ @ "
| Interactive learning

ey
Committing <7/
Continue with the details of
creating commits, which
occurs in the context of a

pre-selected branch in local
settings

Learn git branching tutorial

Concepts

- Properties and elements: Working
directory, staging area, git repository
Operations: add, commit, restore
Best practices: Atamic commits,
selective versioning

Interactive learning
Project case study

e,

restore

~
2)
AN add DN commit T
4 s Q’T) Focus on transfer between
File (ch) /) the three areas after studying
e fehanges @ them separately.
git checkout [
restore --staged e
|
‘Working directory Staging area Git repository

Figure 1. Overview of the Pedagogical Recommendations for Teaching Git

https://doi.org/10.62273/BTKM5634

Journal of Information Systems Education, 36(1), 1-12, Winter 2025
https://doi.org/10.62273/BTKM5634

There are both practical and theoretical rationales to
support this recommendation. First, the typical everyday
workflow of Git commonly begins with checking the status of
branches and selecting the appropriate one on which to work.
By starting with the competence area of branching, students
become accustomed to this real-world scenario. Second,
committing in Git benefits from a deeper understanding of the
underlying Git model. It is beneficial for students to have a clear
understanding of branching before delving into committing or
collaborating. This foundation will help them comprehend
versioning operations like checkout, revert, and reset, which
rely on knowledge of commits and the commit history within a
branch. Similarly, synchronizing work with remote repositories
and organizing contributions online requires a conceptual
understanding of branches (see Figure 1). As a result, we
recommend prioritizing branching as the initial topic taught,
followed by committing and collaborating.

This recommendation is consistent with schemata theory
(Anderson, 2018), a cognitive theory that emphasizes the
importance of developing mental schemata and associating new
information with existing schemata. The cognitive perspective
of schemata theory offers an explanation of how knowledge is
organized and stored in our minds. According to this theory, a
schema is a mental framework or structure that enables us to
organize and interpret information. Schemata are developed
through experience and learning. As we encounter new
information, we assimilate it into existing schemata or create
new schemata to accommodate novel knowledge. In line with
this theory, instructors have the discretion to teach content areas
that have strong internal coherence and arrange them in an order
that facilitates students’ discovery of associations and
understanding across these areas. With respect to Git
instructions, starting with a high-level overview of branching,
rather than diving into specific details, may allow students to
form associations and better comprehend the Git model before
adding more technical details. This approach enables them to
build a solid foundation before delving into more intricate
concepts.

4.2 Pedagogical Recommendation 2: Proceed From
Conceptual to Interactive Learning

Sessions on branching, committing, and collaborating should
start with focused explanations of the key concepts because
understanding them requires concentrated effort. Afterwards,
the concepts should be practiced interactively, as group-based
learning sessions ensure that students can apply these concepts
in practice.

Initially, instructors should select and explain the key
concepts, enabling learners to focus on selected contents while
eliminating errors and distractions related to their application.
In line with the work of De Rosso and Jackson (2013), it is
essential to carefully choose Git concepts, taking into account
their relative complexity. In the initial phase, learners can thus
concentrate on a limited set of fundamental concepts, aiming to
isolate this learning experience from concepts associated with
the other Git areas. The primary objective is to reduce the
necessity of context-switching and thus minimizing time spent
on unrelated tasks such as file changes and collaboration. In a
nutshell, cognitive dependencies on other competency areas
should be minimized, especially in the early stages of learning
Git.

The first part of the recommendation aligns with cognitive
load theory (Plass et al., 2010), which posits that the way
information or tasks are presented can impact the level of
extraneous cognitive load experienced by learners. In
educational psychology, cognitive load theory (Sweller, 1988)
examines how the cognitive load imposed on learners affects
the learning process. The selection and separation of conceptual
and interactive learning reduces cognitive load in the first
phase. One crucial aspect of cognitive load theory is the concept
of split-attention effects (Chandler & Sweller, 1992), which
occur when learners must simultaneously process information
from different sources or modalities, leading to cognitive
overload and reduced comprehension. When learners are
presented Git commands on static slides or on the command-
line, they have to imagine how the corresponding Git graph
evolves. This is a typical situation in which split attention can
be expected to have negative effects on learning outcomes.
Furthermore, research on the constraints of human memory
sheds light on the limitations and capacities of memory systems
(Baddeley & Hitch, 1974). Staying within these constraints is
essential for designing effective instructional strategies that
optimize learning outcomes. Taken together, theories of
cognitive load and human memory constraints provide valuable
insights into the cognitive processes involved in learning and
inform instructional practices aimed at reducing cognitive load
and enhancing learning efficiency.

After focusing on the conceptual foundations, students
should be provided with opportunities to apply and test their
conceptual understanding in practical settings. The
instructional approach should transition to interactive and
group-oriented learning sessions that progressively advance in
complexity. As learners gain proficiency in the fundamentals,
instructors can gradually introduce more intricate exercises.
The complexity of the Git conceptual model, as outlined by De
Rosso and Jackson (2013), aligns with this approach, starting
with simpler tasks and gradually incorporating more
challenging elements and leveraging on the advantages of
collaborative group work.

This part of the recommendation is consistent with three
pedagogical theories. First, interactive learning theory (Kolb,
2014) suggests that interactive learning tools can be particularly
effective in computer science education. This theory assumes
learning to be a continuous process involving four stages:
concrete experience, reflective observation, abstract
conceptualization, and active experimentation. The theory
emphasizes the importance of actively engaging with the
learning process and suggests that different learners may prefer
different learning styles in the four stages of the learning cycle.
This approach further emphasizes connecting practical
experiences to existing knowledge. Group-based learning has
emerged as a potent educational strategy for addressing
challenging tasks, as evidenced by numerous studies in the
field. As an example, Johnson and Johnson (2009) demonstrate
the effectiveness of group-based learning in fostering
successful educational outcomes. By emphasizing social
interdependence—the reliance of individuals on one another to
achieve common goals—cooperative learning approaches
harness the collective potential of groups, thus underscoring the
significance of group-based learning as a dynamic educational
strategy suitable for addressing challenging tasks. By
embracing social interdependence and collaborative learning
principles, educators can create enriching learning

https://doi.org/10.62273/BTKM5634

Journal of Information Systems Education, 36(1), 1-12, Winter 2025
https://doi.org/10.62273/BTKMS5634

environments that empower students to thrive academically and
socially.

Second, the learning-by-doing-approach (Reese, 2011)
focuses on learning from direct experiences resulting from
one’s own actions. This approach focuses on experiential
problem-based learning in real-world contexts, combined with
student collaboration and reflection. Overall, the learning-by-
doing approach emphasizes active engagement, practical
application, and reflection as essential components of effective
learning experiences. It highlights the importance of engaging
in exercises of involvement, which lead to subconscious
learning.

Third, the socio-cultural learning theory (Connolly et al.,
2022) recognizes the value and meaning of everyone’s unique
perspective and promotes the social sharing of personal
experiences. It incorporates Vygotsky’s zone of proximal
development, which suggests that learning with assistance is
more effective and successful than learning alone (Chaiklin,
2003). In line with this theory, we observed that groups
achieved progress at a higher rate in the practice sessions than
did individuals working alone, because students helped each
other solve errors.

Overall, Pedagogical Recommendation 2 underscores the
importance of finding a balance between the focused
introduction of concepts and their application in self-learning
settings, as recommended by Vial and Negoita (2018). After
focusing on understanding and applying contents within each
competence area, learners should be well-prepared to solve
transfer questions involving different areas.

4.3 Pedagogical Recommendation 3: Stimulate the Transfer
of Knowledge Between the Areas of Competence

After the three areas are studied independently, the focus turns
to the transfer of knowledge between these areas of

competence, as cognitive connections between committing,
branching, and collaborating are an essential part to acquiring
a solid understanding of Git.

In this phase, acquired knowledge is used to solve more
complex and realistic tasks that involve interconnections across
different areas. The questions in Table 4 prioritize grasping the
mechanics and reasoning behind Git usage and require students
to transfer knowledge, beyond simply conveying factual
knowledge about Git. By understanding the reasons and
methodologies behind Git operations, learners gain the capacity
to employ their expertise across various scenarios and manage
more intricate version control situations. Mastering such
interconnected settings enables learners to develop a deeper
comprehension of Git’s fundamental model. Including a set of
transfer questions at the end is an effective measure to prepare
leaners for the real-world challenges in software development
and collaborative projects. These questions can also serve as an
assessment tool to measure participants’ understanding of the
key concepts covered during the session, as well as their ability
to connect these concepts with other areas.

Schemata theory supports this recommendation for two
reasons. First, it highlights the role of activating prior
knowledge, which challenging transfer questions effectively
stimulate, strengthening existing schemata and making them
more accessible for future use cases (Anderson, 2018). Second,
it contends that schema construction relies on the addition of
associations with existing knowledge, suggesting that
associations across thematic areas may encourage the
development of more complex and interconnected schemata
(Anderson, 2018). As such, this theory suggests that transfer
questions may stimulate students to recognize connections
between Git areas, enable a deeper understanding, and improve
their ability to apply this knowledge in novel situations.

Areas and Rationale Example Questions

Branching — committing
e Rationale: Start with the most

o How do the different options to restore changes from the last commit
(soft/mixed/hard reset, revert) differ?

recent commit and continue with
commits in the history of the
branch, given that the recent
commits are consulted relatively
often compared to analyzing and
editing older commits.

How does switch/checkout/reset/revert affect the areas, i.e., the working directory
and staging area? Why do we need a clean working directory?

How can we enter the ‘detached HEAD mode’ and for which purposes could it be
useful?

How can older commits be edited and what is the effect of rewriting history” on the
following commits?”

Branching — collaborating

e Rationale: Proceed from single-
branch synchronization to
workflows in highly collaborative
settings, which can involve forks,
more remotes, and more complex
branching models.

What would you expect if you push a branch with a divergent history?

Why should ‘rewriting history’ be avoided when pushing shared branches?
How does “Git pull —rebase” work and when is it useful?

How are local branches associated with remote branches? How are ‘tracking
branches’ set up during push or pull?

How can changes from your local branch be contributed to a remote repository
owned by another maintainer? If you continue your development on the branch,
how can these changes be contributed?

Committing — collaborating

e Rationale: Proceed from simple
linear commits to merging
strategies in collaborative
settings, in which community
conventions must be considered.

How does GitHub’s web-based functionality to edit and commit files work? Are the
working directory and staging area available on GitHub?

What is the difference between merge, rebase, and squash options in pull requests?
In the context of merging or squashing pull-requests, what is the difference between
committer and author?

Table 4. Examples of Transfer Questions

https://doi.org/10.62273/BTKM5634

Journal of Information Systems Education, 36(1), 1-12, Winter 2025
https://doi.org/10.62273/BTKM5634

Our proposed model encourages educators to teach Git by
breaking the material down into easily digestible topics before
introducing brain teasers that involve combining concepts
across areas (Eysenck & Keane, 2020). Breaking the learning
process into smaller, easily manageable parts enables students
to grasp fundamental principles and gain expertise in specific
areas before facing intricate challenges (Goldstein & Vanhorn,
2008). After becoming proficient in the individual areas,
students can then move on to solving brain teasers that
incorporate multiple concepts. These challenges not only
reinforce learning but also foster critical thinking and showcase
the practical application of knowledge across different contexts
and encourage reflective observation, as suggested by Kolb
(2014).

5. PRACTICAL STRATEGIES

To effectively implement the pedagogical recommendations
given above, we suggest three practical strategies, as outlined
below.

5.1 Practical Strategy 1: Create Self-Contained Learning
Environments by Minimizing Technical Dependencies
Between Areas

While existing teaching resources provide some examples for
use in self-contained practice sessions on committing, creating
self-contained learning settings to practice branching and
collaborating skills is more challenging. Applying Git
operations related to these two areas often requires having
preceding commits and related Git setup steps. Our learning
materials allow students to directly manipulate branches (Git’s
directed acyclic graph) or collaborate through remote
workflows supported by such hosting platforms as GitLab or
GitHub.

To practice branching in a self-contained environment, we
recommend the interactive Learn Git Branching tutorial, which
provides immediate visual feedback and allows for focused
practice without the need for extensive setup (as shown in the
screenshot in Figure 2). In this way, learners can concentrate on
understanding and applying the core concepts of branching and
the Git graph without spending time on setting up local
repositories, defining Git parameters, and committing changes
for each version.

To practice collaboration in a self-contained environment,
we developed the Open-Source Collaboration Game on GitHub
(Wagner, 2024), which allows students to practice committing,
branching, submitting pull requests, and merging online
without the need for local setup or SSH connection. It further
simplifies the workflow by eliminating the distinction between
working directory and staging area and removes the need for git
add operations. Overall, this strategy enables learners to
efficiently use their learning time to apply the focal concepts
without distractions related to setup and technical details.

5.2 Practical Strategy 2: Start by Illustrating Concepts
Dynamically, and Have Students Practice It in Small Groups
Afterwards

The second practical strategy proposes a two-pronged
approach, consisting of a focused and dynamic illustration of
the key concepts followed by practice sessions in small groups
(illustrated in Figure 3). It begins with concept teaching,
prioritizing the comprehension of fundamental models such as

branching and the underlying directed acyclic graph (DAG).
While static slides may offer a convenient way to present
information, they often fall short in effectively teaching
complex, dynamic concepts like Git. Corresponding split-
attention effects were discussed as a rationale for Pedagogical
Recommendation 2.

eo0o # Leme Git Branching °

»

$ help 4
$ levels

$ git commit

$ git commit

$ git branch dev °
$ git switch dev+ @

Die Ref dev+ existiert nicht oder ist
unbekannt

$ git switch dev

$ git commit

$ git commitg e

Entschuldigung, der Befehl @ ap

"git commitg"” wird nicht unterstitzt!

$ git commit ®

$ git switch maing @ e

Die Ref maing existiert nicht oder ist

unbekannt

$ git commit

$ git commit

$ git switch
L . ca

Ich bendtige mindestens 1 L

Argument (e) fir with git switch -~

$ git switch main

$ git commit

$ git commit

s —> 3

main*

(2]

Figure 2. The Learn Git Branching Tutorial
(Screenshot)

Figure 3. Start by Illustrating Concepts Dynamically,
Followed by Interactive Application in Small Groups

By embracing interactive, hands-on learning approaches,
educators can create more engaging, immersive learning
experiences that promote deeper understanding of and
proficiency with Git. Our teaching materials delve into the
dynamic interplay between data structures and operations
through dynamic live demonstrations, which appear to be more
instructive than static slides. To further enrich this strategy, our
proposed model incorporates practical sessions that gamify the
learning process and utilize diverse groups and interactive
settings like the Open-Source Collaboration Game (Wagner,
2024). These sessions allow students to assume different roles
and engage actively with the material. Additionally, we cover
Git conventions and sensitize students to poor practices,
ensuring a comprehensive learning experience, as outlined by
Eraslan et al. (2020). The resulting integration ensures that
students progress steadily and acquire various concepts
effectively. For instance, students should practice branching
without the need for creating file changes or authenticating to
establish remote connections. Similarly, collaboration
techniques, such as pull requests, should be learned without

https://doi.org/10.62273/BTKM5634

Journal of Information Systems Education, 36(1), 1-12, Winter 2025
https://doi.org/10.62273/BTKM5634

time constraints to support creating local commits, performing
authentication, establishing connections, and pushing changes
to remote repositories.

Ultimately, this strategy seeks to provide students with a
well-rounded learning experience by combining theoretical
understanding with hands-on practice, fostering collaboration
and engagement, and preparing them for real-world scenarios.

5.3 Practical Strategy 3: Challenge Students to Think
Across Areas Based on Hypothetical Scenarios and an
Array of Transfer Questions

The development of transfer knowledge requires a setting in
which students can explore an array of questions involving
concepts drawn from different Git areas. This involves diverse
and relatively unconnected problem sets that are hard to
combine in a coherent case exercise. Against this background,
our third practical strategy proposes the use of hypothetical
scenarios and an array of transfer questions.

The ordering of Git areas in our proposed method suggests
proceeding from transfer questions first related to branching
and committing to those related to branching and collaborating
and then those related to committing and collaborating (as
shown in Figure 1). Table 4 provides example questions for
each transfer block, along with a rationale for arranging the
questions in the order shown. After providing students with a
scenario and transfer question, the solution may involve
intuition based on pre-existing knowledge of Git concepts,
consultation of the official Git manuals, a Web search, or the
testing of outcomes in an example repository. Given the
challenging nature of these transfer questions, we provide
students with a detailed solution that can be revisited after the
session.

Overall, encouraging students to think in a more connected
way enables them to gain a more holistic understanding of Git
and its applications beyond software development. This
approach allows them to address complex issues from a more
comprehensive perspective and ultimately become more
proficient in using Git.

6. STUDENT FEEDBACK AND EVIDENCE

We offered the Git tutorial three times and, after each session,
we updated and extended the materials based on the feedback
received. We drew inspiration from prior pedagogical work
calling for holistic, 360-degree feedback approaches (Tee &
Ahmed, 2014) and involved different stakeholders in assessing
the teaching materials and providing constructive feedback.
After the sessions, students were asked to provide feedback on
their learning experience and rate their perceived learning
outcomes (the Appendix contains the survey items). Teaching
and research assistants observed the sessions, noting potential
improvements and administering short surveys at the
conclusion. We also consulted with colleagues to evaluate our
approach, clarify presentation, and identify potential
improvements.

Overall, student responses confirmed the appropriateness of
the new approach, which was associated with improved
learning outcomes. The new approach and presentation of
contents were well-received, especially by students who did not
have a technical background. In particular, students who had
previously taken similar courses (following the traditional
approach) indicated that the overall approach and illustrations

made understanding the underlying Git model much easier.
Moreover, students rated their proficiency with Git as high (3.7
out of 5 on average) after completing the session. They found it
helpful to start with Git branching (4 out of 5 on average), with
students who attended other Git courses agreeing that
“Compared to previous Git introductions, the materials are less
technical, and more intuitive” (student comment).

In addition, the materials were commended for clarity of
illustration. The materials were found to be complete, providing
a good overview of the main elements of Git (3.7 out of 5 on
average). No contents were found to be missing (5 out of 5 on
average), suggesting a comprehensive learning experience.

The tutorial raised the interest of the students, who
indicated potential areas where the materials could be extended.
Demands for additional practice materials, references
(including those for Git commands and manuals), and
discussion were noted. Regular discussions were considered
helpful to address specific questions related to, for example,
best practices in the context of remote collaboration and
rebasing. With regard to the interactive Learn Git Branching
tutorial, students appreciated additional examples. These cases
were deemed particularly helpful because they allowed students
to reproduce the commands that led to the example Git graph.
Students also expressed a desire to continue their practice and
improve their confidence with Git based on specific use case
examples, such as open-source projects.

We also noted a few aspects that were associated with
improved ease of learning. In particular, students expressed
appreciation for the variety in modes of teaching delivery,
including the dynamic illustration of concepts, highlighting that
“The usage of a whiteboard and moveable arrows is better than
static slide” (student comment).

The tutorial also featured a mix of conceptual and
interactive vs. applied learning to make the material more
engaging. Additionally, gamification and open-source
collaboration were found to enhance the learning experience.

7. CONCLUDING REMARKS

With this teaching tip, we rethink how Git can be taught
effectively by proposing a novel, macro-level ordering of
contents. Our approach may appear surprising to instructors
who traditionally teach Git with technical dependencies in
mind. Specifically, we recommend starting with branching
instead of committing, as this allows students to understand the
most fundamental principles of the Git model before
proceeding with commands that will be used less frequently and
are more technical in nature. Evidence from our ongoing
teaching activities and student feedback indicates that the
approach is effective. Particularly encouraging was seeing the
many cases in which students who did not have a technical
background apply the key concepts of Git with confidence.
Our suggestions for teaching Git add a novel approach to IS
pedagogy theory, as they challenge the traditional assumption
that technical complexity requires educators to introduce
contents in a particular order. Instead, we envision more
effective educational strategies that are engaging and allow
students to better absorb technical material. A potential
implication is the possibility of expanding this approach to
other areas within IS, including facets of DevOps, open-source
development and rapid prototyping. By doing so, follow-up
work may reinforce efforts to ground teaching of Git and other

https://doi.org/10.62273/BTKM5634

Journal of Information Systems Education, 36(1), 1-12, Winter 2025
https://doi.org/10.62273/BTKMS5634

software engineering topics in pedagogical theory to foster
deeper understanding and better learning outcomes. Teaching
resources in the IS discipline could even contribute to enriching
educational materials and textbooks in other disciplines. In
particular, such work could inform teaching efforts in social
science disciplines in which students are increasingly expected
to be familiar with technical topics such as Git, programming,
and computational analyses.

To facilitate the practical application of our teaching
recommendations, we provide complementary online resources
and invite educators to draw on our work when teaching Git. As
the ability to use Git competently is becoming a common
requirement, it is time to adopt effective teaching approaches,
which facilitate students’ acquiring a deep understanding of Git
and enable them to apply the basic commands or quickly
identify appropriate options.

8. ACKNOWLEDGMENTS
We thank Julian Prester for his feedback on the paper, Rida
Arain for her help with the illustrations, and May Graybeal for
proofreading the paper.
9. ENDNOTES

Complementary online resources are available at https:/digital-
work-lab.github.io/rethink-git-teaching/

10. REFERENCES

Aasheim, C., Shropshire, J., Li, L., & Kadlec, C. (2012).
Knowledge and Skill Requirements for Entry-Level IT
Workers: A Longitudinal Study. Journal of Information
Systems Education, 23(2), 193-204.

Anderson, R. C. (2018). Role of the Reader’s Schema in
Comprehension, Learning, and Memory. In Theoretical
Models and Processes of Literacy (pp. 136-145).
Routledge. https://doi.org/10.4324/9781315110592-9

Baddeley, A. D., & Hitch, G. J. (1974). Working Memory (Vol.
8). New York: GA Bower (Ed.), Recent Advances in
Learning and Motivation. https://doi.org/10.1016/S0079-
7421(08)60452-1

Bou Ghantous, G., & Gill, A. (2017). DevOps: Concepts,
Practices, Tools, Benefits and Challenges. Proceedings of
the Pacific Asia Conference on Information Systems.

Brooks, N. G., Greer, T. H.,, & Morris, S. A. (2018).
Information Systems Security Job Advertisement Analysis:
Skills Review and Implications for Information Systems
Curriculum. Journal of Education for Business, 93(5), 213-
221. https://doi.org/10.1080/08832323.2018.1446893

Chaiklin, S. (2003). The Zone of Proximal Development in
Vygotsky’s Analysis of Learning and Instruction. In A.
Kozulin, B. Gindis, V. S. Ageyev, & S. M. E. Miller (Eds.),
Vygotsky’s Educational Theory in Cultural Context (pp. 39-
64). Cambridge University Press.
https://doi.org/10.1017/CBO9780511840975.004

Chandler, P., & Sweller, J. (1992). The Split-Attention Effect
as a Factor in the Design of Instruction. British Journal of
Educational Psychology, 62(2), 233-246.
https://doi.org/10.1111/].2044-8279.1992.tb01017.x

Connolly, A. J., Mutchler, L. A., & Rush, D. E. (2022).
Teaching Tip: Socio-Cultural Learning to Increase Student

10

Engagement in Introduction to MIS. Journal of Information
Systems Education, 33(2), 113-126.

Cummings, J., & Janicki, T. N. (2020). What Skills Do Students
Need? A Multi-Year Study of IT/IS Knowledge and Skills
in Demand by Employers. Journal of Information Systems
Education, 31(3), 208-217.

De Rosso, S. P., & Jackson, D. (2013). What’s Wrong With
Git? A Conceptual Design Analysis. Proceedings of the
2013 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software,
37-52. https://doi.org/10.1145/2509578.2509584

DeSanto, D., Karnes, V., Flouton, M., Farris, J., & Benson, H.
(2023). Product Roles. GitLab Handbook.
https://handbook.gitlab.com/job-families/product/

Deshpande, A., Sharp, H., Barroca, L., & Gregory, P. (2016).
Remote Working and Collaboration in Agile Teams.
Proceedings of the International Conference on
Information Systems.

Dohmke, T. (2023). 100 Million Developers and Counting.
https://github.blog/2023-01-25-100-million-developers-
and-counting/

Eraslan, S., Rios, J. C. C., Kopec-Harding, K., Embury, S. M.,
Jay, C., Page, C., & Haines, R. (2020). Errors and Poor
Practices of Software Engineering Students in Using Git.
Proceedings of the Conference on Computing Education
Practice, 1-4. https://doi.org/10.1145/3372356.3372364

Eysenck, M. W, & Keane, M. T. (2020). Cognitive
Psychology: A Student’s Handbook. Psychology Press.
https://doi.org/10.4324/9781351058513

Goldstein, E. B., & Vanhorn, D. (2008). Cognitive Psychology:
Connecting Mind, Research, and Everyday Experience
(Vol. 59). Thomson Wadsworth Belmont, CA.

Haaranen, L., & Lehtinen, T. (2015). Teaching Git on the Side:
Version Control System as a Course Platform. Proceedings
of the ACM Conference on Innovation and Technology in
Computer Science Education (pp- 87-92).
https://doi.org/10.1145/2729094.2742608

Hassan, N., Rivard, S., Schultze, U., & Willcocks, L. (2023).
Products of Theorizing—Towards Native Theories of
Emerging Information Technologies. Journal of
Information Technology, 38(4), 372-381.
https://doi.org/10.1177/02683962231217348

Isométtonen, V., & Cochez, M. (2014). Challenges and
Confusions in Learning Version Control With Git.
Proceedings of the International Conference on
Information and Communication Technologies in
Education, Research, and Industrial Applications (pp. 178-
193). https://doi.org/10.1007/978-3-319-13206-8_9

Jabrayilzade, E., Uyanik, F. S., Siiliin, E., & Tiiziin, E. (2022).
An Interactive Approach to Teaching Git Version Control
System. Proceedings of the Hawaii International
Conference on System Sciences.
https://doi.org/10.24251/HICSS.2022.112

Johnson, D. W., & Johnson, R. T. (2009). An Educational
Psychology Success Story: Social Interdependence Theory
and Cooperative Learning. Educational Researcher, 38(5),
365-379. https://doi.org/10.3102/0013189X09339057

Kolb, D. A. (2014). Experiential Learning: Experience as the
Source of Learning and Development. FT Press.

Latinovic, M., & Pammer-Schindler, V. (2021). Automation
and Artificial Intelligence in Software Engineering:
Experiences, Challenges, and Opportunities. Proceedings

https://doi.org/10.62273/BTKM5634
https://digital-work-lab.github.io/rethink-git-teaching/
https://digital-work-lab.github.io/rethink-git-teaching/
https://doi.org/10.4324/9781315110592-9
https://doi.org/10.1016/S0079-7421(08)60452-1
https://doi.org/10.1016/S0079-7421(08)60452-1
https://doi.org/10.1080/08832323.2018.1446893
https://doi.org/10.1017/CBO9780511840975.004
https://doi.org/10.1111/j.2044-8279.1992.tb01017.x
https://doi.org/10.1145/2509578.2509584
https://handbook.gitlab.com/job-families/product/
https://github.blog/2023-01-25-100-million-developers-and-counting/
https://github.blog/2023-01-25-100-million-developers-and-counting/
https://doi.org/10.1145/3372356.3372364
https://doi.org/10.4324/9781351058513
https://doi.org/10.1145/2729094.2742608
https://doi.org/10.1177/02683962231217348
https://doi.org/10.1007/978-3-319-13206-8_9
https://doi.org/10.24251/HICSS.2022.112
https://doi.org/10.3102/0013189X09339057

Journal of Information Systems Education, 36(1), 1-12, Winter 2025
https://doi.org/10.62273/BTKMS5634

of the Hawaii International Conference on System Sciences

(pp. 146-155). https://doi.org/10.24251/HICSS.2021.017
Lippa, D. A. (2016). Get Out of Git Hell: Preventing Common

Pitfalls of Git. Proceedings of the International Workshop

on Release Engineering (p. 22).
https://doi.org/10.1145/2993274.3011284
Microsoft News Center. (2018).

https://news.microsoft.com/2018/06/04/microsoft-to-
acquire-github-for-7-5-billion/

Pathak, A. (2020). Introduction to Git for Beginners. XRDS,
26(4), 54-59. https://doi.org/10.1145/3398459

Plass, J. L., Moreno, R., & Briinken, R. (2010). Cognitive Load
Theory. Cambridge University Press.
https://doi.org/10.1017/CBO9780511844744

Reese, H. W. (2011). The Learning-by-Doing Principle.
Behavioral ~— Development — Bulletin, 17(1), 1-19.
https://doi.org/10.1037/H0100597

Smits, M., & Mogos, S. (2013). The Impact of Social Media on
Business Performance. Proceedings of the 21st European
Conference on Information Systems.

Sweller, J. (1988). Cognitive Load During Problem Solving:
Effects on Learning. Cognitive Science, 12(2), 257-285.
https://doi.org/10.1207/s15516709cog1202 4

Tafliovich, A., Estrada, F., & Caswell, T. (2019). Teaching
Software Engineering With Free Open Source Software
Development: An Experience Report. Proceedings of the
Hawaii International Conference on System Sciences.
https://doi.org/10.24251/HICSS.2019.931

Tee, D. D., & Ahmed, P. K. (2014). 360 Degree Feedback: An
Integrative Framework for Learning and Assessment.
Teaching in Higher Education, 19(6), 579-591.
https://doi.org/10.1080/13562517.2014.901961

Thummadi, B., Khapre, V. D., & Ocker, R. (2017). Unpacking
Agile Enterprise Architecture Innovation Work Practices:
A Qualitative Case Study of a Railroad Company.
Proceedings of the Americas Conference on Information
Systems.
https://doi.org/10.5465/AMBPP.2017.16844abstract

Vial, G., & Negoita, B. (2018). Teaching Programming to Non-
Programmers—The Case of Python and Jupyter
Notebooks. Proceedings of the International Conference on
Information Systems.

Wagner, G., & Prester, J. (2024). CoLRev: An open-Source
Environment for Collaborative Reviews (Version 0.12.3)
https://doi.org/10.5281/zenodo.11668338

Wagner, G. (2024). The Open-Source Collaboration Game
(0.1.0). Zenodo. https://doi.org/10.5281/zenodo.13323591

Westby, E. J. H. (2015). Git for Teams: A User-Centered
Approach to Creating Efficient Workflows in Git. O’Reilly
Media, Inc.

11

AUTHOR BIOGRAPHIES

Gerit Wagner is an assistant professor of digital work at Otto-
Friedrich Universitdt Bamberg. His
teaching activities cover Python
programming, Git, and open-source
software development, with many of
his students contributing to the
CoLRev package for literature
reviews. In research, he focuses on
the future of work, at the intersection
of digital technologies, knowledge
work, and crowd work. In addition, he contributes to literature
review methods and tool design. His publications have
appeared in journals like the Journal of Strategic Information
Systems, Information Systems Journal, and Journal of
Information Technology.

Laureen Thurner studies information systems at Otto-
Friedrich Universitdt Bamberg and
serves as a student assistant at the
Professorship for Information
Systems (Digital Work). She has
industry experience in IT security
consulting in Switzerland, where she
worked on enhancing cybersecurity
measures for various clients. In her
role as a student assistant, Laureen
focuses on open-source technologies, Git, and employee
handbooks in the tech sector, as well as security and data
protection. She contributes to creating and maintaining internal
documentation and supporting the integration of secure and
efficient practices within digital work environments.

https://doi.org/10.62273/BTKM5634
https://doi.org/10.24251/HICSS.2021.017
https://doi.org/10.1145/2993274.3011284
https://news.microsoft.com/2018/06/04/microsoft-to-acquire-github-for-7-5-billion/
https://news.microsoft.com/2018/06/04/microsoft-to-acquire-github-for-7-5-billion/
https://doi.org/10.1145/3398459
https://doi.org/10.1017/CBO9780511844744
https://doi.org/10.1037/H0100597
https://doi.org/10.1207/s15516709cog1202_4
https://doi.org/10.24251/HICSS.2019.931
https://doi.org/10.1080/13562517.2014.901961
https://doi.org/10.5465/AMBPP.2017.16844abstract
https://doi.org/10.5281/zenodo.11668338
https://doi.org/10.5281/zenodo.13323591

Journal of Information Systems Education, 36(1), 1-12, Winter 2025
https://doi.org/10.62273/BTKM5634

APPENDIX

Survey Items

1. Did you attend any Git courses before? (Yes/No, if yes, where?)
2. How does the Git introduction compare to previous courses in terms of structure and difficulty?
3. Rate your proficiency with Git (after the session) - Likert scale, ranging from 1 (Really good) to 5 (None)
4. It was helpful to start with branching - Likert scale, ranging from 1 (Strongly agree) to 5 (Strongly disagree)
5. Thave a good overview of the main elements of Git - Likert scale, ranging from 1 (Strongly agree) to 5 (Strongly disagree)
6. Iam confident in using Git in projects - Likert scale, ranging from 1 (Strongly agree) to 5 (Strongly disagree)
7. How was the length of this Git introduction?
1) Too short
2) Justright
3) Too long

8. Were there any contents missing? If yes, please elaborate:

No | Yes | Which contents?

Branching
Committing
Collaborating

9. Comment section (for ideas or changes)

12

https://doi.org/10.62273/BTKM5634

	a-2403026TT Final-JWB-LAM-XPZ.pdf

