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First Application of Data Analytics

Dr. John Snow’s Map of the 1854 London Cholera Outbreak

Source: http://www udel edu/johnmack/frec480/cholera 2/227



Use Cases of Data Analytics - Examples
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Fundamental Skills of Data Analytics
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The Data Analytics Process

Source : http://www.datasciencecentral.com/profiles/blogs/data-science-simplified-principles-

and-process
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Need for Knowledge about the Algorithms

The distance between using Excel and VBA for

modeling in credit scoring, for example, and using

machine learning algorithms and R or Python to

enhance the results, is not that great, compared to

the distance between someone running a packaged

algorithm they don’t really understand and

someone who understands the mathematical and

statistical operations within an algorithm and can

optimize or adapt it as needed – and do so in the 6/227



Statistics vs. Machine Learning

Statistics about finding valid conclusions about the

underlying applied theory, and on the interpretation of

parameters in their models. It insists on proper and

rigorous methodology, and is comfortable with making

and noting assumptions. It cares about how the data

was collected and the resulting properties of the

estimator or experiment (e.g. p-value). The focus is on

hypothesis testing.

Machine Learning (ML) aims to derive practice-relevant
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Statistical Regression vs. Machine Learning Algorithms
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Explanation vs. Prediction (I)

Question 1: I have a headache. If I take an

aspirin now, will it go away?

Question 2: I had a headache, but it passed. Was

it because I took an aspirin two hours ago? Had

I not taken such an aspirin, would I still have a

headache?
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Explanation vs. Prediction (II)

Explanation :

Explanation is about understanding relationships and why

certain things happen.

It requires an understanding of cause and effect.

Tests of causal hypotheses are fundamental.

Measures of significance are central.

A good explanatory model may also have predictive power.

Prediction :
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Correlation

Source: Organic Trade Association, 2011 Organic lndustry Survey, U.p.

Department of Education, Office of Special Education Programs, Data

Analysis System (DANS)

Organic food sales and the rate of autism seem to have a
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Correlation vs. Causality (I)

Correlation: Two data series behave “similar”

Causality: Principle of Cause and Effect
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Correlation vs. Causality (II)

13/227



Correlation vs. Causality (III)

But:

Sometimes it is better

to know/predict

something even if we
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Statistical Estimation

Source: http://www.dxbydt.com/the-size-of-your-sample
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Definitions

A method is a composition of formalized principles

that form the basis for a stringent calculation process.

An algorithm is a procedure or set of steps or rules to

accomplish a task. It is usually the implementation of

a method. Algorithms are used to build models.

In the given context, a model is the description of the

relationship between variables. It is used to create

output data from given input data, for example to

make predictions.
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Traditional Analytics Process

18/227



Example Regression - Fitting the model
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Example Regression - Testing the model
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Data Errors and their Consequences
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Modern Analytics Process

22/227



Best Fit vs. Best Generalization
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Over- and Underfitting

Due to the problem of overfitting, the main goal is to

maximize the prediction quality and not to fit the data that

is used for the model estimation as well as possible. This is
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The Bias-Variance Tradeoff

The prediction error is influenced by

three components:

Error = Bias + Variance + Noise

Bias is the inability of the used

method to learn the relevant

relations between the inputs and the

outputs. It reflects the method

quality, e.g. if a method only

produces linear models.

Variance is represents the deviation 25/227



Summarizing: Statistics vs. Data Analytics
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Which Method should I choose?

The choice of the method of data analysis depends on

the one hand on the scope of application, but on the

other hand on the interrelationships of the data to be

analyzed.

In the Big Data area, data spaces are often highly-

dimensional, making it difficult to visualize the

interrelationships.

For this reason, the choice of the method can often not

be made ex ante. In these cases, different methods are
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Linear World

28/227



Quadratic World
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Nonlinear World (Type 1)

30/227



Nonlinear World (Type 2)
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Nonlinear World (Type 3)
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Nonlinear World (Type 4)
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The Data Analytics Process - Technical View

Source: http://blogs.msdn.microsoft.com/martinkearn/2016/03/01/machine-learning-is-for-

muggles-too/
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Data Preparation and Enrichment

The data collection and preparation phase is the most labor-

intensive one, consuming on average between 60-80% of a

data scientist’s time. It’s critical therefore to select a tool that

can automate or at least speed the workflows associated with

data preparation.
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Data Cleaning

1. Proof of correctness of the data

examine for irregular outliers (e.g. Age=236)

examine for typographical errors (e.g. Frankfrut)

examine for different writing styles (e.g. behavior/behaviour)

—

2. Handling missing values
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Missing Values Strategies
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Sampling

A population can be defined as including all people or

items with the characteristic one wishes to understand.

Sampling is about to find a representative subset of that

population.

Data represents the traces of the real-world processes,

and exactly which traces we gather are decided by our

sampling method.

There are two sources of randomness and uncertainty:

1. the randomness and uncertainty underlying the process
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Sampling in Times of Big Data

Question:

Is there any need for sampling in times of Big Data?

Why not “N=ALL”?

Answer:

Data is not objective! Data does not speak for itself.

Data is just a quantitative echo of the events of our

society.

Examples:
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Reasons for Sampling

The volume of data is too large to capture and

process

Design the analytics process using a subset of the

data for performance reasons. Later use the

complete data set.

The data set doesn’t perfectly represent the target

population.

The data set is imbalanced.
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Popular Methods of Sampling (I)
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Popular Methods of Sampling (II)
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Systematic Sampling
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Random Sampling
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Proportional Sampling
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Downsampling
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SMOTE

SMOTE (Synthetic Minority

Oversampling Technique) is an

oversampling technique where the

synthetic samples are generated

for the minority class.

At first the total number of

oversampling observations N is set

up. Usually, it is selected such that

the resulting class distribution is

1:1 Now the iteration starts by 48/227



Feature Engineering

Feature engineering is the process of using domain knowledge of

the data to create features that make machine learning algorithms

work. If feature engineering is done correctly, it increases the

predictive power of machine learning algorithms by creating

features from raw data that help facilitate the machine learning

process.

A feature (variable, attribute) is depicted by a column in a dataset.

Considering a generic two-dimensional dataset, each observation

is depicted by a row and each feature by a column, which will have

a specific value for an observation:
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Variants of Feature Engineering

1. Transformation

convert features (e.g., birth date → age)

build lag structures (e.g., time-lags)

normalization / standardization / scaling

2. Type Conversion

if numerical type is needed, transform categorical into numerical data using

dummy features

if categorical type is needed or more informative, discretize numerical

features (e.g., income → poor / rich classes)

3 Feature Combination 50/227



Scaling

Most datasets contain features highly varying in magnitudes, units

and range.

Most machine learning algorithms have problems with this

because they use distance measures or calculate gradients. The

features with high magnitudes will weigh in a lot more in the

distance calculations than features with low magnitudes and

gradients may end up taking a long time or are not accurately

calculable.

To overcome this effect, we scale the features to bring them to the

same level of magnitudes. The two most discussed scaling

methods are Normalization and Standardization.
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Type Conversion (Encoding)

Many machine learning algorithms cannot work with categorical

data directly. To convert categorical data to numbers, there exist

two variants:

Label encoding refers to transforming the word labels into

numerical form so that the algorithms can understand how to

operate on them. Every categorical value is assigned to one

numerical value, e.g. young -> 1, middle_age -> 2, old -> 3. This

only works in specific situations where you have somewhat

continuous-like data, e.g. if the categorical feature is ordinal.

One hot encoding is a representation of a categorical variable as

binary vectors. Every categorical value is assigned to an artificial
52/227



Example of Feature Engineering (I)

Data sets often contain date/time features. These features are

rarely useful in their original form because they only contain

ongoing values. However, they can be useful for extracting cyclical

factors, such as weekly or seasonal effects. Suppose, we are given

a data “flight date time vs status”. Then, given the date-time data,

we have to predict the status of the flight.
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Example of Feature Engineering (II)

Suppose we are given the latitude, longitude and other data with

the objective to predict the target feature “ Price_Of_House “.

Latitude and longitude are not of use in this context if they are

alone. So, we will combine the latitude and the longitude to make

one feature.

In other cases, it might be appropriate to transform latitude and

longitude into categories which reflect regions, for example
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Example of Feature Engineering (III)

Suppose we are given a feature “ Marital_Status ” and other data with the

objective to classify customers into “Creditworthy” and “ Not_Creditworthy “.

In the data set the martial status has many different values, for example

● single living alone

● single living with his parents

● married living together

● married living separately

● divorced

● divorced but living together

● registered partnerships

● living in marriage-like community

id d
55/227



Partitioning the Data

The partitioning of the data in Training and Test Data has the

aim to proof if the analytical results can be generalized. The

analysis (e.g. the development of a classifier) is carried out on

the basis of training data. Subsequently, the results are

applied to the test data. If the results are significantly worse

than the training data, the model is not generalizable, which

is called overfitting.

The partitioning of the data in training and test data can be
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Applying Training and Test Data

Source: http://www.cs.kent.edu/~jin/BigData/Lecture10-ML-Classification.pptx
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Partitioning
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Exploratory Data Analysis

In Exploratory Data Analysis (EDA), there is no hypothesis and

there is no model.

People are not very good at looking at a column of numbers

or a whole data table and then determining important

characteristics of the data. EDA techniques have been devised

as an aid in this situation.

Reasons for EDA:

● gain intuition about the data

● make comparisons between distributions

● sanity checking (making sure the data is on the scale you 59/227



Univariate Non-Graphical EDA

Non-graphical exploratory data analysis is the first step when

beginning to analyze the data. This preliminary data analysis

step focuses on four points:

● measures of central tendency, i.e. mean and median. The

median, known as 50th percentile, is more resistant to

outliers.

● measures of spread, i.e. variance, standard deviation, and

interquartile range

● the shape of the distribution

● the existence of outliers 60/227



Tests on Outliers

Outlier are data objects, which are clearly different from the

others.

Usually, the detection of outliers is an unsupervised process,

because they are not known before analyses.

In the case of numerical attributes the Interquartil Range can

be used. Here, an outlier is defined if the attribute lies outside

the interval

Usually, k has a value between 1.5 and 3. The bigger k, the

more different the values must be to be classified as outliers 61/227



Handling Outliers

Outlier have to be eliminated if they

1. would bias the analysis, e.g. if 9 persons have an age

between 20 and 30 and the 10th person is 80 years old.

2. are erogenous data, e.g. as a result of input errors or a

defect sensor.

It is not always acceptable to drop an observation just because

it is an outlier. They can be legitimate observations and are

sometimes interesting ones. It’s important to investigate the

nature of the outlier before deciding.

In those cases where you shouldn’t drop the outlier one option 62/227



Univariate Graphical EDA

Non-graphical and graphical EDA methods complement each

other, they have the same focus. While the non-graphical methods

are quantitative and objective, they do not give a full picture of

the data. The distribution of a variable tells us what values the

variable takes and how often each value occurs.

Types of displays:

for numerical variables: Histograms, Boxplots, Quantile-normal

plots, …

for categorical variables: Pie charts, Bar graphs, …
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Multivariate Non-Graphical EDA

Multivariate non-graphical EDA techniques generally show the

relationship between two or more variables in the form of either

cross-tabulation for categorical variables or correlation statistics

for numerical variables.
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Multivariate Graphical EDA

Multivariate graphical EDA techniques are scatterplots for

numerical variables, Barcharts for categorical variables, or

Boxplots for mixed types.
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Touring Diagram
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Categories in Machine Learning
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Supervised Learning
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Unsupervised Learning
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Supervised and Unsupervised Learning
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Use Cases Quiz
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Reinforcement Learning

The solution to many of the problems in our lives cannot be

automated. This is not because current computers are too

slow, but simply because it is too difficult for humans to

determine what the program should do.

Supervised learning is a general method for training an

approximator. However, supervised learning requires sample

input-output pairs from the domain to be learned.

For example, we might not know the best way to program a

computer to recognize an infrared picture of a tank, but we do

have a large collection of infrared pictures, and we do know
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Reinforcement Learning

The agent learns how to achieve a given goal by trial-and-

error interactions with its environment by maximizing a

reward.
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AlphaGo

Go is one of the hardest games in the world for AI because

of the huge number of different game scenarios and

moves. The number of potential legal board positions is

greater than the number of atoms in the universe.

The core of AlphaGo is a

deep neural network. It was

initially trained to learn

playing by using a database

of around 30 million

recorded historical moves 75/227



Libratus

An artificial intelligence called Libratus has beaten four of the

world’s best poker players in a grueling 20-day tournament in

January 2017.

Poker is more difficult because it’s a game with imperfect

information. With chess and Go, each player can see the entire

board, but with poker, players don’t get to see each other’s hands.

Furthermore, the AI is required to bluff and correctly interpret

misleading information in order to win.

“We didn’t tell Libratus how to play poker. We gave it the rules of

poker and said ‘learn on your own’.” The AI started playing

randomly but over the course of playing trillions of hands was able
76/227



Types of Artificial Intelligence

Discriminative AI is designed to differentiate and

classify input, but not to create new content.

Examples include image or speech recognition, credit

scoring or stock price prediction.

Generative AI is able to generate new content based on

existing information and user specifications. This

includes texts, images, videos, program code, etc. The

generated content can often hardly be distinguished

from human-generated content. As things stand at
77/227



ChatGPT

ChatGPT is a generative AI that produces human-

like text and communicates with humans.

The “GPT” in ChatGPT comes from the language

model of the same name, which was extended for

ChatGPT with various components for

communication and quality assurance.

GPT is based on a huge neural network that

essentially represents the language model. While

the first GPT 3 has 175 billion parameters the 78/227



ChatGPT - Approach

ChatGPT generates its response word by word via a

sequence of probabilities, with each new word depending

on the previous ones.

The most probable word is not always selected; instead,

randomization takes place. This means that different

variants can be created for the same task. 79/227



ChatGPT - Semantic Spaces (I)
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ChatGPT - Semantic Spaces (II)
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ChatGPT - Evaluation Component
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Assume you have the age, income, and

a creditworthiness category of “yes” or

“no” for a bunch of people and you

want to use the age and income to

predict the creditworthiness for a new

person.

You can plot people as points on the

plane and label people with an empty

circle if they have low credit ratings.

Introductory Example

Credit-Scoring is a typical example for a classification problem. A

bank wants to determine the creditworthiness of a customer.
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k-Nearest Neighbors

k-Nearest Neighbors (k-NN) is an algorithm that can be

used when you have a bunch of objects that have been

classified or labeled in some way, and other similar

objects that have not gotten classified or labeled yet,

and you want a way to automatically label them.

The intuition behind k-NN is to consider the most

similar other items defined in terms of their attributes,

look at their labels, and give the unassigned item the

majority vote. If there’s a tie, you randomly select
86/227



Measuring Similarity
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Unnormalized vs. Normalized
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Example (I)
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Example (II)
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Example (III)

3. Choose the k nearest neighbors

Customer Age Monthly

Income

Monthly

Costs

Creditworthy Distance

A 0.0000 0.0303 0.0400 yes 0.4347

C 0.1714 0.3333 0.3600 yes 0.1726

E 0.3143 0.1818 0.2000 no 0.2010

F 0.4286 0.3939 0.6000 no 0.4482

G 0.4857 0.2121 0.1200 yes 0.3090

X 0 2286 0 3636 0 2000 ? 91/227



Creation and Use of Models
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Calculating Accuracies

93/227



1. Split the original labeled dataset into training and

test data.

2. Pick an evaluation metric. Misclassification rate or

accuracy are good ones.

3. Run k-NN a few times, changing k and checking the

evaluation measure.

4. Optimize k by picking the one with the best

evaluation measure.

k Accuracy

Determining Parameter k
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Evaluating the quality of Classification (I)

True positives (TP), true negatives (TN), false positives

(FP), and false negatives (FN), are the four different

possible outcomes of a single prediction for a two-class

case. A false positive is when the outcome is incorrectly

classified as “yes”, when it is in fact “no”. A false negative

is when the outcome is incorrectly classified as negative,

when it is in fact positive. True positives and true

negatives are obviously correct classifications.
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Evaluating the quality of Classification (II)

Test metrics are used to assess how accurately the model

predicts the known values:

Most classification algorithms pursue to minimize the

misclassification rate. They implicitly assume that all

misclassification errors cost equally. In many real-world

applications, this assumption is not true. Cost-sensitive

learning takes costs, such as the misclassification cost,
97/227



Evaluating the quality of Classification (III)

Misclassification rate and accuracy can be misleading, for example in

the case of imbalanced samples. Extreme case:

For problems like, this additional measures are required to evaluate a

classifier.

Sensitivity (true positive rate, recall) measures the proportion of

positives that are correctly identified as such. Specificity (true negative

rate) measures the proportion of negatives that are correctly identified

as such.
98/227



Problem of Imbalancing and Accuracy

Assume the following case: A credit card company wants

to create a fraud detection system to include it into their

transactional systems. The outcomes should be “Accept”

(Y) and “Reject” (N). Because fraud rarely occurs, the data

set consists of 320 observations for Y and 139 for N. They

are partitioned into training and test set. Finally, the

model is trained and tested.

Because of the majority of the Y class, the training process

concentrates on these cases because their correct

classification promises the highest accuracy 99/227



Evaluating the quality of Classification (IV)

Precision measures the proportion

of predicted positives who are true

positives. A precision of 0.5 means

that whenever the model classifies

a positive, there is a 50% chance of

it really being a positive.The higher

the precision the smaller the

number of false positives.

Recall measures the percentage of

positives the model is able to catch. 100/227



Evaluating the quality of Classification (V)

The F1 Score can be interpreted as the weighted average

of both precision and recall. The main idea of the F1 Score

is to strike a balance between both precision and recall

and measure it in a single metric.

A F1 score reaches its best value at 1 (perfect precision

and recall) and worst at 0.

It is commonly used in cases of high class imbalance.
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Creation and Use of Models
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Which one is better?
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Introductory Example
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Decision Trees (I)

Decision trees belong to the hierarchical methods of

classification. They analyze step-by-step (recursive

partitioning).

A decision tree consists of nodes and borders. The

topmost node (without any parent node) is called “root”.

A node without a child node is called “leaf”. Nodes that

have parent and child nodes are called “interior nodes”.

The interior nodes represent the splitting of the included

object sets. An interior node has at least two child nodes

(sons) If every interior node has exactly two child nodes 106/227



The decision tree approach

does not require any

Decision Trees (II)

Graphically, decision tree models divide the dataspace in

a large number of subspaces and search for the variables

which are able to split the dataspace with the greatest

homogeneity. We can think of the decision tree as a map

of different path. For a distinct combination of predictor

variables and their observed values, we would enter a

specific path, which gives the classification in the leaf of

the decision tree.
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Decision Trees (III)

Source: http://iopscience.iop.org/article/10.1088/1749-4699/5/1/015004
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Overview of important Decision Tree Methods

Name CART ID3 C5.0 CHAID Random

Forests

Idea Choose the

attribute with

the highest

information

content

One of the first

methods from

Quinlan; uses

the concept of

information

gain

Like ID3

based on the

concept of

information

gain

Choose the

attribute that

is most

dependent

on the target

variable

Construct

many trees

with different

sets of features

and samples

(randomly).

Result by

voting.

Measure

used

Gini-Index Information

gain (entropy)

Ratio of

information

gain

Chi-square

split

Optional,

mostly Gini-

Index

Type of

Splitting

Binary Complete,

pruning

Complete,

pruning

Complete,

pruning

Complete
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Introductory Example
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Splitting with Entropy in ID3
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Calculating the Information Gain

The information gain is a measure, that shows (by

combination of the entropies) the appropriateness of an

attribute for splitting:

where m = number of values (here two: light, strong), ti =

number of data sets with strong or light wind (8 resp. 6), t

= total number of data sets (14) and entropy(t) = entropy

before splitting.
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Decision using ID3

Information gain (outlook) = 0.246

Information gain (humidity) = 0.151

Information gain (wind) = 0.048

Information gain (temperature) = 0.029

We choose the attribute with the largest information gain

(here: outlook) for the first splitting.

As solution we obtain the following tree:
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Decision using C5.0

ID3 tends to favor attributes that have a large number of values,

resulting in larger trees. For example, if we have an attribute that has a

distinct value for each record, then the entropy is 0, thus the

information gain is maximal.

To compensate for this, C5.0 is a further development that uses the

information gain ratio as a splitting criterion:

In the case of our example the GainRatio of Windy is
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Handling Numerical Attributes

Numerical attributes are usually splitted binary. In

contrast to categorical attributes many possible splitting

points exist .

The splitting point with the highest information gain is

looked for. For this, the potential attribute is sorted

according to its values first and then all possible splitting

point and the corresponding information gains are

calculated. In extreme cases there exists n-1 possibilities.
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The CART Algorithm

The CART algorithm (Classification And Regression Trees)

constructs trees that have only binary splits. Like C5.0, it

is able to handle categorical and numerical attributes.

As a measure for the impurity of a node t, CART uses the

Gini Index. In the case of two classes the Gini Index is

defined as:
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Splitting in CART
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Coherence between Entropy and Gini Index

Remark: Entropy has been scaled from (0, 1) to (0, 0.5)!
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If tree performance is measured from

the number of correctly classified

cases it is com-mon to find that the

training data gives an over optimistic

Overfitting (I)

Most decision tree algorithms partition training data until

every node contains objects of a single class, or until

further partitioning is impossible because two objects

have the same value for each attribute but belong to

different classes. If there are no such conflicting objects,

the decision tree will correctly classify all training objects.
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Overfitting (II)

The Iearner overfits to correctly classify‚ the noisy data objects

Noisy or dirty data objects

120/227



Random Forest (I)

Random forest is an ensemble classifier that consists of many decision trees.

For every tree a subset of the data objects and a subset of features is randomly chosen. Then the

tree is constructed usually using the Gini Index.

In the end, a simple majority vote is taken for prediction.

Algorithm :

1. Create n samples from the original data. Frequent sample size is 2/3.

2. For each of the samples, grow a tree, with the following modification: at each node, rather

than choosing the best split among all predictors, randomly sample m* of the m predictors and

choose the best split from among those variables.

3. Predict by aggregating the predictions of the n trees (majority votes).
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Random Forest (II)

Voting-Principle of Random Forest:

To avoid overfitting effects , the size and the depth of the trees can be restricted .
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Introductory Example
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Why not classical linear regression?

It is possible to implement a linear regression on such a dataset where Y={0,1}.

Problems:

The predicted values of the linear model can be greater than 1 or less than 0

e is not normally distributed because Y takes on only two values

The error terms are heteroscedastic (the error variance is not constant for all values of X)

Source: Bichler (2015): Course Business Analytics, TU München
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Logistic regression (I)

Logistic regression is a regression model where the dependent variable is categorical. The

classical logistic regression is a binary classifier, where the dependent variable has two states.

The output of a logistic regression model ranges between 0 and 1.

Logistic regression uses the logistic function (or Sigmoid function) because it can take an input

with any value from negative to positive infinity, whereas the output always takes values

between zero and one and hence is interpretable as a probability.

It is defined as:
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Logistic regression (II)

If we set

the logistic function can now be written as:

We interpret F(x) as the conditional probability that the class attribute has the value 1 with the

given input vector x.

The coefficients ß0 and ß can be estimated via Maximum Likelihood Estimation.

The parameter ß0 represents the unconditional probability of “Y=1” knowing nothing about the

feature vector x.

The parameter vector β defines the slope of the logit function. It determines the extent to which

certain features contribute for increased or decreased likelihood to “Y=1”.

The output of a logistic model is a probability. To use this for classification purposes:

If the predicted probability is > 0.5 the label is 1

and otherwise 0.
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Functionality of Human Neurons

A Look into the Nervous System 129/227



An Easy Example (I)

f(x) = Activation function

e.g.

where t = Stimulus threshold
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An Easy Example (II)

f(x) = Activation function

e.g.

where t = Stimulus threshold
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Functionality of a Neuron
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For the case of n inputs, we can rewrite the neuron’s function to

with b = -t. b is known as the perceptron’s bias. The result of this function would then be fed

into an activation function to produce a labeling

This results in a linear classifier. Finally, we have to pick a line that best separates the labeled

data. The training of the perceptron consists of feeding it multiple training samples and

calculating the output for each of them. After each sample, the weights w are adjusted in

such a way so as to minimize the output error, defined for example as accuracy or MSE.
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The Multilayer Perceptron

The single perceptron approach has a major drawback: it can only learn linear functions. To

address this problem, we’ll need to use a multilayer perceptron, also known as feedforward

neural network. Here, we add layers between the input and the output layer, so-called

hidden layers . The hidden layer is where the network stores it’s internal abstract

representation of the training data.

Input Neurons : receive signals from the outer world .

Hidden Neurons : have an internal representation of the outer world .

Output Neurons : pass signals to the outer world .
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Types of Activation Functions

A linear composition of linear functions is still just a linear function, so most neural networks

use non-linear activation functions:

tangens __ __ hyperbolicus

logistic function (sigmoid)
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Design of a Multilayer Perceptron
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The Backpropagation algorithm is used for calculating the weights. In a training phase, the

weights are iteratively calculated using training data sets in such a way that the difference

between the calculated and the expected (true) results is minimized. Because the

simultaneous calculation of all weights is not possible, they must be found via a learning

process. The backpropagation algorithm looks for the minimum of the error function in

weight space using the method of gradient descent.

The procedure in principle:

(1) Define the initial weights

(2) Put the training set into the input layer

(3) Calculate the result (value of the output layer) via successive processing one layer after

the other

(4) Compare the output values and target values and calculate the difference

(5) Iterate steps (2) to (4) for every training set

(6) Calculate the total error. Adjust the weights beginning with the output layer towards the

input layer (backpropagation)

(7) Iterate steps (2) to (6) until the total error reaches the defined error level or the number 137/227



Adjusting the Weights (I)

The error of a training set i is calculated using the quadratic deviation between the values o ij of

the neurons of the output layer and their corresponding true values t ij .

The sum of the errors of all h training objects is the total error value E:
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Adjusting the Weights (II)

The function E has to be minimized. Because it depends on the output neurons o j , it

automatically depends on their weights to the precedent layer(s) :

Thus, the weights have to be found where E is minimal.

Examples of Error functions with two weights:
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Adjusting the Weights (III)

To minimize the error (cost) function E the backpropagation algorithm uses the method of

gradient descent . This method searches those weights, where the vector containing the partial

first derivatives of the error function (gradient) is equal to the zero vector (minimum):

To adjust the weight w ij , which connects neurons i to j, the formula is:

where a represents a predefined learning rate , which defines the step length of each iteration in

the negative gradient direction and x i denote the output value of neuron i .

The adjusted weight is then computed via
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Principle of Gradient Descent (I)

Gradient descent is used to find the minimum of the error function . It works iterative. In an 1-

dimensional world, we define the error by

The error function is at minimum if the error is equal to zero.

The prediction is the result of a combination of input and weight

The weight as the dynamic component is now adjusted until the error is at minimum. Starting

with an initial weight, gradient descent jumps step by step into the minimum by adjusting the

weight. The adjustment is done by calculating the direction and the amount for a step via

Now, the weight is adjusted via

After repeating this several times, the minimum is reached.
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Principle of Gradient Descent (II)

The formula

represents the derivative of the error to the weight.

A derivative is a term that is calculated as the slope (or gradient) of a graph at a particular point.

The slope is described by drawing a tangent line to the graph at the point. So, if we are able to

compute this tangent line, we might be able to compute the desired direction to reach the

minima.

Since the weight only indirectly affects the error, the chain rule must be applied
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Principle of Gradient Descent (III)

Gradient Descent isn’t perfect. When the gradients are too big we might overshoot so much that

we’re even farther away than we started

This problem is destructive because overshooting this far means we land at an even steeper

slope in the opposite direction. This causes us to overshoot again even farther.

If the gradients are too big, we can make them smaller. We do this by multiplying them by a

single number between 0 and 1 (such as 0.01). This fraction is typically named alpha.

Thus, the adjustment of the weights is done by

Source: https://iamtrask.github.io/2015/07/27/python-network-part2/
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Backpropagation Step by Step (I)

In the following, the backpropagation process will be demonstrated using a simple Neural

Network consisting of three layers: Input layer with two inputs neurons, one hidden layer with

two neurons, and output layer with a single neuron:

Our initial weights will be: w 1 = 0.11, w 2 = 0.21, w 3 = 0.12, w 4 = 0.08, w 5 = 0.14 and w 6 = 0.15.
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Backpropagation Step by Step (II)

Our dataset has one sample with two inputs and one output with the values inputs=[2, 3] and

output=[ 1 ]. We will use given weights and inputs to predict the output. Inputs are multiplied by

weights; the results are then passed forward to next layer:

For reasons of simplification, no activation function is used in the neurons.

Source: http://hmkcode.github.io/ai/backpropagation-step-by-step

145/227



Backpropagation Step by Step (III)

The network output, or prediction, is not even close to actual output. We can calculate the

difference or the error as following:

Our main goal of the training is to reduce the error or the difference between prediction and

actual output. Since actual output is constant, “not changing”, the only way to reduce the error

is to change prediction value. The question now is, how to change prediction value?

Source: http://hmkcode.github.io/ai/backpropagation-step-by-step
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Backpropagation Step by Step (IV)

By decomposing prediction into its basic elements we can find that weights are the variable

elements affecting prediction value. To change prediction value, we need to adjust the weights:

We do this using Backpropagation. To find a local minimum of a function using gradient

descent, one takes steps proportional to the negative of the gradient of the function at the

current point:

For example, we update w 6 :

We can picture gradient descent optimization as a hiker (the weight coefficient) who wants to

climb down a mountain (cost function) into a valley (cost minimum), and each step is determined

b th t f th l ( di t) d th l l th f th hik (l i t ) 147/227



Backpropagation Step by Step (V)

The derivation of the error function is evaluated by applying the chain rule:

To update w 6 we can apply the following formula:

Similarly, we can derive the update formula for w5 and any other weights existing between the

output and the hidden layer:

Source: http://hmkcode.github.io/ai/backpropagation-step-by-step
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Backpropagation Step by Step (VI)

When moving backward to update w 1 , w 2 , w 3 and w 4 existing between input and hidden

layer, the partial derivative for the error function with respect to w 1 , for example, will be as

following:

We can find the update formula for the remaining weights w 2 , w 3 and w 4 in the same way.

Source: http://hmkcode.github.io/ai/backpropagation-step-by-step
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Backpropagation Step by Step (VII)

In summary, the update formulas for all weights will be:

We can rewrite the update formulas in matrices:

Source: http://hmkcode.github.io/ai/backpropagation-step-by-step
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Backpropagation Step by Step (VIII)

With the derived formulas we can now adjust the weights:

Source: http://hmkcode.github.io/ai/backpropagation-step-by-step
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Backpropagation Step by Step (IX)

... and use the new weights to recalculate the example:

The new prediction 0.26 is bit closer to the output than the previously predicted one 0.191. We

repeat now the same process until error is close or equal to zero.

Source: http://hmkcode.github.io/ai/backpropagation-step-by-step
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Problems with fixed Training and Test Samples

Method 1 optimize

Test data is used for two things:

Optimize the model training

Select the best model via testing the model quality

Method 2 optimize

Method 3 optimize

This contradicts the idea of independent testing and results in:

Endogenization of the test data

Selection Bias

… optimize

Rule : NEVER use any information from the test data for model training !
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Addressing the Endogeneity Problem

Predictive _ Model_

Validation Sample

155/227



Training and test error can be highly variable, depending on precisely which observations are

included in the training set and which observations are included in the validation set (

Selection Bias ).

Example of differentOLS models as a result of different samples:

To avoid such problems, one can use so-called resampling methods.
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Cross Validation

In Data Science cross validation can be used for model selection and adjustment. In these

cases, cross validation is applied to the training data set. For every iteration, k-1 folds are

used for model fitting and the remaining fold for testing the model (Validation). Every time,

the quality measure (e.g. accuracy) for the validation fold is captured. At the endof this step,

the average and the standard deviation of the measures are calculated. The best model is the

one with the best ratio in high average and low standard deviation.

Once the model type and its optimal parameters have been selected, a final model is trained

using these hyper-parameters on the full training set, and the generali-zation quality is

measured on the test set.
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Cross Validation and Grid Search

Partition the Dataset into a training and test set

For every hyperparameter value combination apply cross validation

For the combination with the highest (mean) quality calculate the final model with the

complete training set

Test the final model with the test set

Compare the accurracies of training and test with regard to overfitting

Calculate the mean quality of the validation folds, e.g. mean accurracy or mean F1
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Cross Validation and Grid Search in Python

Performs cross validation with the given hyperparameter combinations and manages the

evaluation process

Using the original libraries and functions

KNeighborsClassifier()

cross_val_score()

Performs cross validation

DecisionTreeClassifier()

RandomForestCl … ()
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Variants of Hyperparameter Optimization

1. Grid Search

Grid search sequentially goes through a preselected list of permutations for each

hyperparameter and evaluates the entire search space.

2. Random Search

Random search selects values for hyperparameters at random within a predefined

distribution.

While a grid search is able to find the best model given the provided options, limited compute

resources means that in practice, the search space selected will have to be limited. A random

search on the other hand does not iterate over the entire search space.
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Other Variants of Cross Validation

1. Repeated Cross Validation

2. Nested Cross Validation

Different composition of the folds by random selection.
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Cross Validation in Time Series

In the case of time series, classical cross validation may cause problems. If we choose random

samples and assign them to either the test set or the training set we are quickly in the

situation of using values from the future to forecast values in the past. But we want to avoid

future-looking when we train our model. If there is a temporal dependency between

observations, we must preserve that relation during training and testing.

A procedure that can be used for cross validating a time series model is cross validation on a

rolling basis. Start with a small subset of data for training purpose, forecast for the later data

points and then check the accuracy for the forecasted data points. The time frame for the

forecast is then included as part of the next training dataset and subsequent data points are

forecasted and so on.

Scikit-learn provides a class TimeSeriesSplit to do this.
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Ensemble Methods

Ensemble methods use different models (created via different data sets, feature sets or

methods) that are simultaneously applied to the same problem. The results are sent to an

aggregating operation that produces the final result.

The most widely used classes of ensemble methods are:

Bagging

Boosting

Stacking
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Bagging means to build multiple models from different subsamples of the training dataset

and/or with different methods. The results are sent to an (weighted) voting operation that

produces the final result.

Source: http://rasbt.github.io/mlxtend/ user_guide /classifier/ EnsembleVoteClassifier /
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Boosting involves sequentially building an ensemble by training each new model instance to

emphasize the training instances that previous models mispredict . Different variants exist,

mostly based on tree methods. In general, any method can be used. This involves the usage of

different methods at the different iterations when building the sequence of models.

Source: https://blog.bigml.com/2017/03/14/introduction-to-boosted-trees/
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Stacking means to build multiple models (typically of differing types) and a supervisor model

that learns how to best combine the predictions of the primary models. The inputs of the

supervisor model (meta-classifier) are the outputs of the other models:

Source: http://rasbt.github.io/mlxtend/ user_guide /classifier/ StackingClassifier /
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Types of Ensembles

Type 1:

consists of only a few models

each is a strong model

like few professional experts

risk of diverging opinions

risk of experts being biased to their experiences

Type 2:

consists of many models

each is a weak model as a principle

based on the idea of the wisdom of the masses

Random Forest and Gradient Boosted Trees are examples
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Predicting using Regression Methods

Example: Predicting House Prices

Function: Price = f(SquareFootage, Bedrooms, Age, SchoolRating)

Source:

http://www.sclgsummit.org/uploads/presentation/8934b2d0be055a2261f5d0320f5b59bb.pdf
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Traditional OLS Regression Approach

Function:

Price = ß0 + ß1 * SquareFootage+ ß2 * Bedrooms + ß3 * Age + ß4 * SchoolRating

S
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Ordinary Least Squares Regression
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Measuring the Quality of Fit (I)

Measuring the quality of fit means to measure how well the predictions of a model match the

observed data.

A commonly-used measure is the Mean Absolute Error (MAE) which can be calculated for the

training and the test set

A variant is the Mean Absolute Percentage Error (MAPE) which expresses the error in percent

While MAE and MAPE are easily interpretable, using the absolute value of the error often is not as

desirable as squaring this difference. Depending on how you want your model to treat outliers,

or extreme values, in your data, you may want to bring more attention to these outliers or

downplay them.

Consequently, the most used measure in regression is the Mean Squared Error (MSE) or its

variant the Root Mean Squared Error (RMSE), which is the square root of the MSE.
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Measuring the Quality of Fit (II)
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Ridge Regression
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Complexity can be measured as the size of the set of possible outputs for a given set of inputs.

In this example the interval 0 to x * represents the set of possible inputs. Function h 0 has the

lowest complexity because there is just one output independent of the inputs. h 2 has the

highest complexity because here the set of possible outputs is the biggest one.
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Complexity und Generalisation

Mean Squared Error
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Different Complexities
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𝜆 → ∞ : Lowest Complexity

the ridge regression coefficients are equal to zero. For every input, the result is β0.

𝜆 = 0 : Relative High Complexity (linear Model)

the penalty term has no effect, and ridge regression will produce the least squares estimates.

Example:

Source:

James et al. (2013): An Introduction to Statistical Learning with R Applications, p. 215f.
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Handling High-Dimensionality (I)

OLS is not suitable for high-dimensional data. Especially when the number of features p is as

large as, or larger than, the number of observations, OLS cannot be applied. _ _ Regardless of

whether or not there truly is a relationship between the features and the response, OLS will yield

a set of coefficient estimates that result in a perfect fit to the data, such that the residuals are

zero.

The figure shows two cases. When there are 20 observations, n > p and the OLS line does not

perfectly fit the data. When there are only two observations, then regardless of the values of

those observations, the regression line will fit the data exactly. This is problematic because this

perfect fit will almost certainly lead to overfitting of the data.
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Handling High-Dimensionality (II)

The figure illustrates the risk of applying OLS when the number of features p is large. The model

R2 increases to 1 as the number of features increases, and the training set MSE decreases to 0. At

the same time, the MSE on a test set becomes extremely large as the number of features

increases.

In contrast, methods like ridge regression are particularly useful for performing regression in the

high-dimensional setting. Essentially, these approaches avoid overfitting by using a less flexible

fitting approach than least squares.

Source: James et al. (2013): An Introduction to Statistical Learning with R Applications, p. 240f.
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Support Vector Regression

The Goal is to find a robust model with a high generalization ability.

SVR regards two sources of Robustness:

1. Eliminating Noise

2. Handling Complexity
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Insensitive Loss Function (I)

-insensitive Loss

does not penalize acceptable deviations (defined by )
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Insensitive Loss Function (II)

Using the e-insensitive loss function, only those data objects are considered in the estimation,

which have a distance greater than e from the regression function:
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Support Vector Regression (I)
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Estimating the SVR (Linear Case)
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Nonlinearity (I)

The linear case :

The nonlinear __ __ case :
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Nonlinearity (II)
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Kernel Functions (I)

Kernel Functions are used to project n-dimensional input to m-dimensional input, where m is

higher than n:

Any point x in the original space is mapped into the higher dimensional space. For reason of

efficiency, the mapping is not performed in real but instead embedded in the model building

process via the kernel function:

Instead of ß 0 + ß · x = y the following is used ß 0 + ß · F (x) = y

The main idea to use a kernel is: A linear regression curve in higher dimensions becomes a non-

linear regression curve in lower dimensions.
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Estimating the SVR (Nonlinear Case)
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Kernel Functions (II)

A frequently used kernel function is the Polynomial Kernel Function:

where x and z are vector points in any fixed dimensional space and n is the order of the kernel.

In the case of order equal to 2, we get:

Source: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000173
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Kernel Functions (III)

A nother frequently __ __ used __ __ kernel __ __ function __ __ is __ __ the __ Radial Basis __

Function __ (__ RBF):

It maps the data according a Gaussian function where Sigma ( s ) is a streching factor.

Different Sigmas

= Euclidean distance between x and z

Source: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000173
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Using Neural Network for Regression

Artificial neural networks are often used for classification because of the relationship to logistic

regression. Neural networks typically use a logistic activation function and output values from 0

to 1 like logistic regression.

But the continuous output of a net must not be interpreted as a probability, so neural networks

can be used too for regression, to model complex and non-linear relationships.

The Singlelayer Perceptron corresponds to a linear regression while a Multilayer Perceptron is

able to approximate nearly any function regard-less of the complexity and nonlinearity.

Because of the high complexity of the MLP, the models are usually very sensitive and have a

tendency to overfitting.

There exist regularization methods, which make the networks better at generalizing beyond the

training data.(see http://neuralnetworksanddeeplearning.com/chap3.html)
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Neural Network (Multilayer Perceptron)

Source:

http://www.sclgsummit.org/uploads/presentation/8934b2d0be055a2261f5d0320f5b59bb.pdf
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Source:

http://www.sclgsummit.org/uploads/presentation/8934b2d0be055a2261f5d0320f5b59bb.pdf

199/227



4 Predictive Analytics

4.1 Subject of Predictive Analytics

4.2 The Analytics Process

4.3 Data Preparation

4.4 Methods, Algorithms and Applications

4.4.1 Classification

4.4.2 Regression

4.4.2.1 OLS

4.4.2.2 Ridge Regression

4.4.2.3 Support Vector Regression

4.4.2.4 Neural Networks

4.4.2.5 Decision Trees

4.4.2.6 K-Nearest Neighbors

200/227



Introductory Example

Decision Tree for Predicting Fuel Consumption of Cars(in Miles-per-Gallon )
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Regression Trees

Some of the tree approaches can be used for regression too. They can be used for nonlinear

multiple regression. The output must be numerical.

The figure shows a regression tree for predicting the salary of a baseball player, based on the

number of years that he has played in the major leagues and the number of hits that he made in

the previous year.

The predicted salary is given by the mean value of the salaries in the corresponding leaf, e.g. for

the players in the data set with Years<4.5, the mean (log-scaled) salary is 5.11, and so we make a

prediction of e5.11 thousands of dollars, i.e. $165,670, for these players.

Players with Years>=4.5 are assigned to the right branch, and then that group is further

subdivided by Hits. The predicted salaries for the resulting two groups are 1,000*e6.00

=$403,428 and 1,000*e6.74 =$845,346.
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Constructing a Regression Tree (I)

Source: James et al. (2013): An Introduction to Statistical Learning with R Applications, p. 305f.
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Constructing a Regression Tree (II)
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Random Forests for Regression

Due to the usage of means as predictors a regression tree usually simplifies the true relationship

between the inputs and the output. The advantage over traditional statistical methods is, that it

can give valuable insights about which variables are important and where. But the prediction

ability is poor compared to other regression approaches.

A much better prediction quality can be achieved with the creation of an ensemble of trees, use

them for prediction and averaging their results. This is done, when applying the Random Forests

approach to a regression task.

Regression Forests are an ensemble of different regression trees and are used for nonlinear

multiple regression. The principle is the same as in classification, except that the output is not

the result of a voting but instead of an averaging process.

The disadvantage of Random Forests is that the analysis, which aggregates over the results of

many bootstrap trees, does not produce a single, easily interpretable tree diagram.
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Comparing the Fitting Ability of one vs. many Regression Trees

Single Regression Tree

Average of 100 Regression Trees
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Limitations of Tree Methods in Regression

When applied to regression problems, tree methods have the limitation that they cannot exceed

the range of values of the target variable used in training. The reason for this lies in their design

principle, how the leaves of the trees are created.

Thus, Random Forests may perform poorly when the target data is out of the range of the

original training data, e.g. in the case of data with persistent trends. A solution may be a

frequent re-training in this case.

An important strength of Random Forests is that they are able to perform still well in the case of

missing data. According to their construction principle, not every tree is using the same

features.

If there is any missing value for a feature during the application there usually are enough trees

remaining that do not use this feature to produce accurate predictions.
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k-Nearest Neighbors for Regression

k-Nearest Neighbors cannot only be used for classification but also for regression. The only

difference in regression is that the prediction is not the result of a majority vote but of an

averaging process.

A simple implementation of KNN regression is to calculate the average of the numerical target of

the k-nearest neighbors. Another approach uses an inverse distance weighted average of the K-

nearest neighbors. KNN regression uses the same distance functions as KNN classification.

Example:
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Introductory Example

Assume you are a wholesale distributor and each row of your dataset corresponds to a customer

showing the following attributes:

1) FRESH: annual spending on fresh products (Continuous); 2) MILK: annual spending on milk

products (Continuous); 3) GROCERY: annual spending on grocery products (Continuous); 4)

FROZEN: annual spending on frozen products (Continuous) 5) DETERGENTS_PAPER: annual

spending on detergents and paper products (Continuous) 6) DELICATESSEN: annual spending

on delicatessen products (Continuous); 7) CHANNEL: customers buying channel (Nominal) 8)

REGION: customers region (Nominal)

Your goal is to segment the users. That means finding similar types of users and bunching them

together.

Why would you want to do this?

You might want to give different users different experiences. Marketing often does this; for

example, to offer toner to people who are known to own printers.

You might have a model that works better for specific groups. Or you might have different

models for different groups.
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Cluster Analysis

Cluster analysis is a type of multivariate statistical analysis. It is used to group data into

separate clusters. The main objective of clustering is to find similarities between data

objects, and then group similar objects together to assist in understanding relationships that

might exist among them. Cluster analysis is based on a mathematical formulation of a

measure of similarity.

There are different types of cluster analysis methods:

Clustering Methods
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Partitioning Cluster Methods

The partitioning cluster methods divide the data into a predetermined number of clusters.

The most popular technique is the K-Means algorithm.

Given a set of observations ( x 1, x 2,…, x n ), where each observation is a m -dimensional real

vector, k -means clustering aims to partition the n observations into ( k ≤ n ) segments S ={ S 1, S

2,..., S k } so as to minimize the within-cluster sum of squares (WCSS).

The objective is to find

where _ _ is the mean of points in S i .
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Procedure of K-Means:

Step 1: Randomly partition the data objects into k clusters.

Step 2: Calculate the cluster centroids.

Step 3: Calculate the distance from every data point to all centroids

Step 4: If a data point is closest to its own centroid, leave it where it __ __ is. If the data point

is not closest to its own centroid, assign __ __ it to the cluster with the closest centroid.

Step 5: Repeat the step 2 to 4 until a complete pass through of all __ __ the data points results

in no data point changing from one __ cluster to another.__
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Example of a K-Means Cluster Analysis
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Between cluster variance:

Within cluster variance:

Finding the Optimal Number of Clusters (I)

The aim of the cluster analysis is the segmentation of objects into clusters, which are

preferably homogeneous in it selves and heterogeneous to each other. The less variance

exists within the clusters and the more variance exists between the clusters, the better is the

number of clusters.

Total variance:

Accumulated variance within the k clusters:

This results in the variance between the clusters:

with n = number of objects

__ m = number of attributes__

__ __ n k __ = number of objects in cluster k__

__ __ c k __ = cluster k__
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Finding the Optimal Number of Clusters (II)

If you put V in __ on the ordinate and the number of cluster k on the abscissa, it often results in

a curve with one or several kinks. At the point where exists the (first) significant kink, you can

find the optimal number of clusters:__

Total variance V tot

Between __ __ cluster variance V betw

Within cluster variance V in

Number of clusters
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Finding the Optimal Number of Clusters (III)

Instead of visually identifying the optimal cluster number, we can calculate the distances from

the points on the elbow curve to a straight line linking the first and the last point on the curve.

The cluster number with the largest distance is then chosen as the one with the strongest kink.

Number of clusters
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Hierarchical Cluster Methods

There are two types of hierarchical cluster methods:

Agglomerative hierarchical clustering is a bottom-up clustering method. It starts with

every single data object in a single cluster. Then, in each iteration, it agglomerates

(merges) the closest pair of clusters by satisfying some similarity criteria, until all of the

data is in one cluster.

Divisive hierarchical clustering is a top-down clustering method. It works in a similar

way to agglomerative clustering but in the opposite direction. This method starts with a

single cluster containing all data objects, and then successively splits resulting clusters

until only clusters of individual data objects remain.
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Process of the Hierarchical Cluster Analysis
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Measuring Similarity between Clusters (I)

Distance between two clusters is the distance between the closest points:

Complete Linkage:

Distance between two clusters is the distance between the farthest pair of points:

Distance between two clusters i and j is the distance between their cendroids :
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Measuring Similarity between Clusters (II)

Average Linkage:

Distance between clusters is the average distance between the cluster points:

Ward’s Method / Minimum Variance Method (only Agglomerative):

Ward’s minimum variance criterion minimizes the total within-cluster variance. At each step the

pair of clusters is merged that leads to minimum increase in total within-cluster variance after

merging. This can be calculated as the square of the distance between cluster means divided by

the sum of the reciprocals of the number of observations in each cluster:

For a comparison of the methods see: Ferreira, L.; Hitchcock, D. B. (2009): A Comparison of

Hierarchical Methods for Clustering Functional Data,
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Single Linkage Example (I)

Source: Fred, Ana: Unsupervised Learning, Universidade Técnica de Lisboa
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Single Linkage Example (II)

Source: Fred, Ana: Unsupervised Learning, Universidade Técnica de Lisboa
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A dendrogram is a tree diagram frequently used to illustrate the arrangement of the clusters

produced by hierarchical clustering. The y-axis represents the value of this distance metric (e.g.

euclidean distance) between the clusters.

In a dendrogram the widths of the horizontal lines give an impression about the dissimilarity of

the merging object. Thus, a good cluster number might be at a point from where the width of

the following horizontal lines is significantly smaller in length. The red line in the graph below

shows such a point:

Counting the points that cut this line might be a good answer for the number of clusters the

data can have. It is the number 6 in this case.
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