Analytics and Big Data
Course Logistics
Agenda
- Introduction to Analytics
- Descriptive Analytics
- Data Warehouse Systems
- Online Analytical Processing (OLAP)
- Predictive Analytics
- Subject of Predictive Analytics
- The Analytics Process
- Data Preparation
- Methods, Algorithms and Applications
- Big Data
Literature
Part 1:
- Sharda, R., Delen, D., & Turban, E. (2018). Business intelligence, analytics, and data science: a managerial perspective.
- Martínez-Plumed, F., Contreras-Ochando, L., Ferri, C., Hernández-Orallo, J., Kull, M., Lachiche, N., Ramirez-Quintana, M. J. & Flach, P. (2019). CRISP-DM twenty years later: From data mining processes to data science trajectories. IEEE Transactions on Knowledge and Data Engineering, 33(8), 3048-3061.
- Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly 36(4), 1165-1188.
Part 2:
- Vaisman, A.; Zimányi, E. (2016): Data Warehouse Systems: Design and Implementation (Data-Centric Systems and Applications), Springer.
- Schutt, R.; O’Neil, C. (2014): Doing Data Science, O’Reilly Media.
- Raschka, Sebastian (2015): Python Machine Learning, Packt Publishing.
Part 3:
- Schmarzo, B. (2016): Big Data MBA, Wiley.
- Bengfort, B., Bilbro, R., & Ojeda, T. (2018). Applied text analysis with python: Enabling language-aware data products with machine learning. O’Reilly Media, Inc.
Part 4:
- Davenport, T. H. (2006). Competing on analytics. Harvard Business Review, 84(1), 98.
- Vidgen, R., Shaw, S., & Grant, D. B. (2017). Management challenges in creating value from business analytics. European Journal of Operational Research, 261(2), 626-639.